首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   5篇
地球物理   12篇
地质学   25篇
海洋学   3篇
天文学   10篇
综合类   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2004年   7篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有52条查询结果,搜索用时 375 毫秒
1.
High‐precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty‐one of 21 chondrules have multiple homogeneous pyroxene data (?17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty‐one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O‐isotope ratios; and (2) suggest efficient O‐isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching ?40‰, similar to CAI or AOA‐like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8–99.5 and ?17O of ?3.9‰ to ?6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O‐isotope reservoir devoid of 16O‐poor H2O. Six Y‐82094 chondrules have ?17O near ?2.5‰, with Mg#s of 64–97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules plus 16O‐poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (?17O: ~+0.1‰). Their O‐isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite‐like chondrule precursors. Finally, three Mg# >99 chondrules have ?17O of ?6.7‰ to ?8.1‰, potentially due to 16O‐rich refractory precursor components. The predominance of Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules and a high chondrule‐to‐matrix ratio suggests bulk Y‐82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules.  相似文献   
2.
To investigate whether the biological toxicity of aquatic hypercapnia is due to the direct effects of CO2 or to the effects of acidification of seawater by CO2, the Japanese flounder (Paralichthys olivaceus) was subjected to seawater equilibrated with a gas mixture of air containing 5% CO2 (pH 6.18) or seawater acidified to the same pH with 1 N H2SO4. All the fish died within 72 h in the CO2 exposure group, whereas no mortality occurred in the acid group. Acid-base parameters as well as plasma ion concentrations were severely perturbed in the CO2 exposure group, whereas they were minimally affected in the acid group. These results clearly demonstrate that the mortality in the CO2 group is a direct result of the elevated levels of dissolved CO2 and not to the effects of the reduced water pH.  相似文献   
3.
Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals such as olivine and pyroxene, yields fluids with unusual chemistry (Mg–OH and Ca–OH waters with pH values up to ~12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rock-hosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg–Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars.  相似文献   
4.
Evaluating the magma depth and its physical properties is critical to conduct a better geophysical assessment of magma chambers of caldera volcanoes that may potentially cause future volcanic hazards. To understand pre-eruptive conditions of a magma chamber before its first appearance at the surface, this paper describes the case of Hijiori caldera volcano in northeastern Japan, which emerged approximately 12,000 years ago at a place where no volcano ever existed. We estimated the depth, density, bulk modulus, vesicularity, crystal content, and bulk H\(_2\)O content of the magma chamber using petrographic interpretations, bulk and microchemical compositions, and thermodynamic calculations. The chemical mass balance calculations and thermodynamic modeling of the erupted magmas indicate that the upper portion of the Hijiori magmatic plumbing system was located at depths between 2 and 4 km, and had the following characteristics: (1) pre-eruptive temperature: about 780 \(^{\circ }\)C; (2) bulk magma composition: 66 ± 1.5 wt% SiO\(_{2}\); (3) bulk magmatic H\(_2\)O: approximately 2.5 wt%, and variable characteristics that depend on depth; (4) crystal content: \(\le\)57 vol%; (5) bulk modulus of magma: 0.1–0.8 GPa; (6) magma density: 1.8–2.3 g/cm3; and (7) amount of excess magmatic H\(_2\)O: 11–32 vol% or 48–81 mol%. The range of melt water contents found in quartz-hosted melt inclusions (2–9 wt%) suggests the range of depth phenocrysts growth to be wide (2\(\sim\)13 km). Our data suggest the presence of a vertically elongated magma chamber whose top is nearly solidified but highly vesiculated; this chamber has probably grown and re-mobilized by repeated injections of a small amount of hot dacitic magma originated from the depth.  相似文献   
5.
Carbon capture and storage (CCS) methods, either sub-seabed or in ocean depths, introduces risk of CO2 leakage and subsequent interaction with the ecosystem. It is therefore important to obtain information on possible effects of CO2. In situ CO2 exposure experiments were carried out twice for 10 days during 2005 using a Benthic Chamber system at 400 m depth in Storfjorden, Norway. pCO2 in the water above the sediment in the chambers was controlled at approximately 500, 5000 and 20,000 μatm, respectively. This article describes the experiment and the results from measured the biological responses within the chamber sediments. The results show effects of elevated CO2 concentrations on biological processes such as increased nanobenthos density. Methane production and sulphate reduction was enhanced in the approximately 5000 μatm chamber.  相似文献   
6.
The oxygen isotope ratios (δ18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record δ18O values from 5 to 17‰, with 99% below 15‰. However, zircons with anomalously high δ18O, up to 23‰, have been reported in detrital suites; source rocks for these unusual zircons have not been identified. We report data for zircons from Sri Lanka and Myanmar that constrain a metamorphic petrogenesis for anomalously high δ18O in zircon. A suite of 28 large detrital zircon megacrysts from Mogok (Myanmar) analyzed by laser fluorination yields δ18O from 9.4 to 25.5‰. The U–Pb standard, CZ3, a large detrital zircon megacryst from Sri Lanka, yields δ18O = 15.4 ± 0.1‰ (2 SE) by ion microprobe. A euhedral unzoned zircon in a thin section of Sri Lanka granulite facies calcite marble yields δ18O = 19.4‰ by ion microprobe and confirms a metamorphic petrogenesis of zircon in marble. Small oxygen isotope fractionations between zircon and most minerals require a high δ18O source for the high δ18O zircons. Predicted equilibrium values of Δ18O(calcite-zircon) = 2–3‰ from 800 to 600°C show that metamorphic zircon crystallizing in a high δ18O marble will have high δ18O. The high δ18O zircons (>15‰) from both Sri Lanka and Mogok overlap the values of primary marine carbonates, and marbles are known detrital gemstone sources in both localities. The high δ18O zircons are thus metamorphic; the 15–25‰ zircon values are consistent with a marble origin in a rock-dominated system (i.e., low fluid(external)/rock); the lower δ18O zircon values (9–15‰) are consistent with an origin in an external fluid-dominated system, such as skarn derived from marble, although many non-metasomatized marbles also fall in this range of δ18O. High δ18O (>15‰) and the absence of zoning can thus be used as a tracer to identify a marble source for high δ18O detrital zircons; this recognition can aid provenance studies in complex metamorphic terranes where age determinations alone may not allow discrimination of coeval source rocks. Metamorphic zircon megacrysts have not been reported previously and appear to be associated with high-grade marble. Identification of high δ18O zircons can also aid geochronology studies that seek to date high-grade metamorphic events due to the ability to distinguish metamorphic from detrital zircons in marble.  相似文献   
7.
High‐precision bulk aluminum‐magnesium isotope measurements of calcium‐aluminum‐rich inclusions (CAIs) from CV carbonaceous chondrites in several laboratories define a bulk 26Al‐26Mg isochron with an inferred initial 26Al/27Al ratio of approximately 5.25 × 10?5, named the canonical ratio. Nonigneous CV CAIs yield well‐defined internal 26Al‐26Mg isochrons consistent with the canonical value. These observations indicate that the canonical 26Al/27Al ratio records initial Al/Mg fractionation by evaporation and condensation in the CV CAI‐forming region. The internal isochrons of igneous CV CAIs show a range of inferred initial 26Al/27Al ratios, (4.2–5.2) × 10?5, indicating that CAI melting continued for at least 0.2 Ma after formation of their precursors. A similar range of initial 26Al/27Al ratios is also obtained from the internal isochrons of many CAIs (igneous and nonigneous) in other groups of carbonaceous chondrites. Some CAIs and refractory grains (corundum and hibonite) from unmetamorphosed or weakly metamorphosed chondrites, including CVs, are significantly depleted in 26Al. At least some of these refractory objects may have formed prior to injection of 26Al into the protosolar molecular cloud and its subsequent homogenization in the protoplanetary disk. Bulk aluminum and magnesium‐isotope measurements of various types of chondrites plot along the bulk CV CAI isochron, suggesting homogeneous distribution of 26Al and magnesium isotopes in the protoplanetary disk after an epoch of CAI formation. The inferred initial 26Al/27Al ratios of chondrules indicate that most chondrules formed 1–3 Ma after CAIs with the canonical 26Al/27Al ratio.  相似文献   
8.
The response of the San Pietro monumental bell-tower located in Perugia, Italy, to the 2016 Central Italy seismic sequence is investigated, taking advantage of the availability of field data recorded by a vibration-based SHM system installed in December 2014 to detect earthquake-induced damages. The tower is located about 85 km in the NW direction from the epicenter of the first major shock of the sequence, the Accumoli Mw6.0 earthquake of August 24th, resulting in a small local PGA of about 30 cm/s2, whereby near-field PGA was measured as 915.97 cm/s2 (E–W component) and 445.59 cm/s2 (N–S component). Similar PGA values also characterized the two other major shocks of the sequence (Ussita Mw5.9 and Norcia Mw6.5 earthquakes of October 26th and 30th, respectively). Despite the relatively low intensity of such earthquakes in Perugia, the analysis of long-term monitoring data clearly highlights that small permanent changes in the structural behavior of the bell-tower have occurred after the earthquakes, with decreases in all identified natural frequencies. Such natural frequency decays are fully consistent with what predicted by non-linear finite element simulations and, in particular, with the development of microcracks at the base of the columns of the belfry. Microcracks in these regions, and in the rest of tower, are however hardly distinguishable from pre-existing ones and from the physiological cracking of a masonry structure, what validates the effectiveness of the SHM system in detecting earthquake-induced damage at a stage where this is not yet detectable by visual inspections.  相似文献   
9.
Ti-in-zircon thermometry: applications and limitations   总被引:16,自引:5,他引:11  
The titanium concentrations of 484 zircons with U-Pb ages of ∼1 Ma to 4.4 Ga were measured by ion microprobe. Samples come from 45 different igneous rocks (365 zircons), as well as zircon megacrysts (84) from kimberlite, Early Archean detrital zircons (32), and zircon reference materials (3). Samples were chosen to represent a large range of igneous rock compositions. Most of the zircons contain less than 20 ppm Ti. Apparent temperatures for zircon crystallization were calculated using the Ti-in-zircon thermometer (Watson et al. 2006, Contrib Mineral Petrol 151:413–433) without making corrections for reduced oxide activities (e.g., TiO2 or SiO2), or variable pressure. Average apparent Ti-in-zircon temperatures range from 500° to 850°C, and are lower than either zircon saturation temperatures (for granitic rocks) or predicted crystallization temperatures of evolved melts (∼15% melt residue for mafic rocks). Temperatures average: 653 ± 124°C (2 standard deviations, 60 zircons) for felsic to intermediate igneous rocks, 758 ± 111°C (261 zircons) for mafic rocks, and 758 ± 98°C (84 zircons) for mantle megacrysts from kimberlite. Individually, the effects of reduced or , variable pressure, deviations from Henry’s Law, and subsolidus Ti exchange are insufficient to explain the seemingly low temperatures for zircon crystallization in igneous rocks. MELTs calculations show that mafic magmas can evolve to hydrous melts with significantly lower crystallization temperature for the last 10–15% melt residue than that of the main rock. While some magmatic zircons surely form in such late hydrous melts, low apparent temperatures are found in zircons that are included within phenocrysts or glass showing that those zircons are not from evolved residue melts. Intracrystalline variability in Ti concentration, in excess of analytical precision, is observed for nearly all zircons that were analyzed more than once. However, there is no systematic change in Ti content from core to rim, or correlation with zoning, age, U content, Th/U ratio, or concordance in U-Pb age. Thus, it is likely that other variables, in addition to temperature and , are important in controlling the Ti content of zircon. The Ti contents of igneous zircons from different rock types worldwide overlap significantly. However, on a more restricted regional scale, apparent Ti-in-zircon temperatures correlate with whole-rock SiO2 and HfO2 for plutonic rocks of the Sierra Nevada batholith, averaging 750°C at 50 wt.% SiO2 and 600°C at 75 wt.%. Among felsic plutons in the Sierra, peraluminous granites average 610 ± 88°C, while metaluminous rocks average 694 ± 94°C. Detrital zircons from the Jack Hills, Western Australia with ages from 4.4 to 4.0 Ga have apparent temperatures of 717 ± 108°C, which are intermediate between values for felsic rocks and those for mafic rocks. Although some mafic zircons have higher Ti content, values for Early Archean detrital zircons from a proposed granitic provenance are similar to zircons from many mafic rocks, including anorthosites from the Adirondack Mts (709 ± 76°C). Furthermore, the Jack Hills zircon apparent Ti-temperatures are significantly higher than measured values for peraluminous granites (610 ± 88°C). Thus the Ti concentration in detrital zircons and apparent Ti-in-zircon temperatures are not sufficient to independently identify parent melt composition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
10.
The origin of large-volume Yellowstone ignimbrites and smaller-volumeintra-caldera lavas requires shallow remelting of enormous volumesof variably 18O-depleted volcanic and sub-volcanic rocks alteredby hydrothermal activity. Zircons provide probes of these processesas they preserve older ages and inherited 18O values. This studypresents a high-resolution, oxygen isotope examination of volcanismat Yellowstone using ion microprobe analysis with an averageprecision of ± 0·2 and a 10 µm spot size.We report 357 analyses of cores and rims of zircons, and isotopeprofiles of 142 single zircons in 11 units that represent majorYellowstone ignimbrites, and post-caldera lavas. Many zirconsfrom these samples were previously dated in the same spots bysensitive high-resolution ion microprobe (SHRIMP), and all zirconswere analyzed for oxygen isotope ratios in bulk as a functionof grain size by laser fluorination. We additionally reportoxygen isotope analyses of quartz crystals in three units. Theresults of this work provide the following new observations.(1) Most zircons from post-caldera low-18O lavas are zoned,with higher 18O values and highly variable U–Pb ages inthe cores that suggest inheritance from pre-caldera rocks exposedon the surface. (2) Many of the higher-18O zircon cores in theselavas have U–Pb zircon crystallization ages that postdatecaldera formation, but pre-date the eruption age by 10–20kyr, and represent inheritance of unexposed post-caldera sub-volcanicunits that have 18O similar to the Lava Creek Tuff. (3) Youngand voluminous 0·25–0·1 Ma intra-calderalavas, which represent the latest volcanic activity at Yellowstone,contain zircons with both high-18O and low-18O cores surroundedby an intermediate-18O rim. This implies inheritance of a varietyof rocks from high-18O pre-caldera and low-18O post-calderaunits, followed by residence in a common intermediate-18O meltprior to eruption. (4) Major ignimbrites of Huckleberry Ridge,and to a lesser extent the Lava Creek and Mesa Falls Tuffs,contain zoned zircons with lower-18O zircon cores, suggestingthat melting and zircon inheritance from the low-18O hydrothermallyaltered carapace was an important process during formation ofthese large magma bodies prior to caldera collapse. (5) The18O zoning in the majority of zircon core–rim interfacesis step-like rather than smoothly inflected, suggesting thatprocesses of solution–reprecipitation were more importantthan intra-crystalline oxygen diffusion. Concave-downward zirconcrystal size distributions support dissolution of the smallercrystals and growth of rims on larger crystals. This study suggeststhat silicic magmatism at Yellowstone proceeded via rapid, shallow-levelremelting of earlier erupted and hydrothermally altered Yellowstonesource rocks and that pulses of basaltic magma provided theheat for melting. Each post-caldera Yellowstone lava representsan independent homogenized magma batch that was generated rapidlyby remelting of source rocks of various ages and 18O values.The commonly held model of a single, large-volume, super-solidus,mushy-state magma chamber that is periodically reactivated andproduces rhyolitic offspring is not supported by our data. Rather,the source rocks for the Yellowstone volcanism were cooled belowthe solidus, hydrothermally altered by heated meteoric watersthat caused low 18O values, and then remelted in distinct pocketsby intrusion of basic magmas. Each packet of new melt inheritedzircons that retained older age and 18O values. This interpretationmay have significance for interpreting seismic data for crustallow-velocity zones in which magma mush and solidified areasexperiencing hydrothermal circulation occur side by side. Newbasalt intrusions into this solidifying batholith are requiredto form the youngest volcanic rocks that erupted as independentrhyolitic magmas. We also suggest that the Lava Creek Tuff magmawas already an uneruptable mush by the time of the first post-calderaeruption after 0·1 Myr of the climactic caldera-formingeruption. KEY WORDS: Yellowstone; oxygen isotopes; geochronology; isotope zoning; zircon; U–Pb dating; caldera; rhyolite; ion microprobe  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号