首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To compare the acute toxicity of CO(2)- and HCl-acidified seawater, eggs and larvae of a marine fish, Pagrus major, were exposed to seawater equilibrated with CO(2)-enriched gas mixtures (CO(2)=5% or 10%, O(2)=20.95% balanced with N(2)) or seawater acidified with 1 N HCl at two pH levels (pH 6.2 (=5% CO(2)) and 5.9 (=10% CO(2))) for 6 h (eggs) or 24 h (larvae). Mortalities of eggs were 85.8% (CO(2)) and 3.6% (HCl) at pH 6.2, and 97.4% (CO(2)) and 0.9% (HCl) at pH 5.9, while those of larvae were 61.2% (CO(2)) and 1.6% (HCl) at pH 6.2, and 100% (CO(2)) and 5.0% (HCl) at pH 5.9. Thus, previous research on the effects of acidified seawater on marine organisms, as a substitute for CO(2), has largely underestimated the toxic effects of CO(2).  相似文献   

2.
We studied the effects of exposure to seawater equilibrated with CO(2)-enriched air (CO(2) 2380 ppm) from eggs to maturity and over two subsequent generations on the copepod Acartia tsuensis. Compared to the control (CO(2) 380 ppm), high CO(2) exposure through all life stages of the 1st generation copepods did not significantly affect survival, body size or developmental speed. Egg production and hatching rates were also not significantly different between the initial generation of females exposed to high CO(2) and the 1st and 2nd generation females developed from eggs to maturity in high CO(2). Thus, the copepods appear more tolerant to increased CO(2) than other marine organisms previously investigated for CO(2) tolerance (i.e., sea urchins and bivalves). However, the crucial importance of copepods in marine ecosystems requires thorough evaluation of the overall impacts of marine environmental changes predicted to occur with increased CO(2) concentrations, i.e., increased temperature, enhanced UV irradiation, and changes in the community structure and nutritional value of phytoplankton.  相似文献   

3.
The inhibition of marine nitrification by ocean disposal of carbon dioxide   总被引:1,自引:0,他引:1  
In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO2-induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the environmental effects of ocean disposal of CO2 is needed to determine whether the potential costs related to marine ecosystem disturbance and disruption can be justified in terms of the perceived benefits that may be achieved by temporarily delaying global warming.  相似文献   

4.
The purple-tipped sea urchin, Psammechinus miliaris, was exposed to artificially acidified seawater treatments (pH(w) 6.16, 6.63 or 7.44) over a period of 8 days. Urchin mortality of 100% was observed at pH(w) 6.16 after 7 days and coincided with a pronounced hypercapnia in the coelomic fluid producing an irrecoverable acidosis. Coelomic fluid acid-base measures showed that an accumulation of CO(2) and a significant reduction in pH occurred in all treatments compared with controls. Bicarbonate buffering was employed in each case, reducing the resultant acidosis, but compensation was incomplete even under moderate environmental hypercapnia. Significant test dissolution was inferred from observable increases in the Mg(2+) concentration of the coelomic fluid under all pH treatments. We show that a chronic reduction of surface water pH to below 7.5 would be severely detrimental to the acid-base balance of this predominantly intertidal species; despite its ability to tolerate fluctuations in pCO(2) and pH in the rock pool environment. The absence of respiratory pigment (or any substantial protein in the coelomic fluid), a poor capacity for ionic regulation and dependency on a magnesium calcite test, make echinoids particularly vulnerable to anthropogenic acidification. Geological sequestration leaks may result in dramatic localised pH reductions, e.g. pH 5.8. P. miliaris is intolerant of pH 6.16 seawater and significant mortality is seen at pH 6.63.  相似文献   

5.
The direct injection of CO(2) in the deep ocean is a promising way to mitigate global warming. One of the uncertainties in this method, however, is its impact on marine organisms in the near field. Since the concentration of CO(2), which organisms experience in the ocean, changes with time, it is required to develop a biological impact model for the organisms against the unsteady change of CO(2) concentration. In general, the LC(50) concept is widely applied for testing a toxic agent for the acute mortality. Here, we regard the probit-transformed mortality as a linear function not only of the concentration of CO(2) but also of exposure time. A simple mathematical transform of the function gives a damage-accumulation mortality model for zooplankton. In this article, this model was validated by the mortality test of Metamphiascopsis hirsutus against the transient change of CO(2) concentration.  相似文献   

6.
Direct injection of CO(2) into the deep ocean is receiving increasing attention as a way to mitigate increasing atmospheric CO(2) concentration. To assess the potential impact of the environmental change associated with CO(2) sequestration in the ocean, we studied the lethal and sub-lethal effects of raised CO(2) concentration in seawater on adult and early stage embryos of marine planktonic copepods. We found that the reproduction rate and larval development of copepods are very sensitive to increased CO(2) concentration. The hatching rate tended to decrease, and nauplius mortality rate to increase, with increased CO(2) concentration. These results suggest that the marine copepod community will be negatively affected by the disposal of CO(2). This could decrease on the carbon export flux to the deep ocean and change the biological pump. Clearly, further studies are needed to determine whether ocean CO(2) injection is an acceptable strategy to reduce anthropogenic CO(2).  相似文献   

7.
A marine secondary producer respires and feeds more in a high CO2 ocean   总被引:1,自引:0,他引:1  
Climate change mediates marine chemical and physical environments and therefore influences marine organisms. While increasing atmospheric CO(2) level and associated ocean acidification has been predicted to stimulate marine primary productivity and may affect community structure, the processes that impact food chain and biological CO(2) pump are less documented. We hypothesized that copepods, as the secondary marine producer, may respond to future changes in seawater carbonate chemistry associated with ocean acidification due to increasing atmospheric CO(2) concentration. Here, we show that the copepod, Centropages tenuiremis, was able to perceive the chemical changes in seawater induced under elevated CO(2) concentration (>1700 μatm, pH<7.60) with avoidance strategy. The copepod's respiration increased at the elevated CO(2) (1000 μatm), associated acidity (pH 7.83) and its feeding rates also increased correspondingly, except for the initial acclimating period, when it fed less. Our results imply that marine secondary producers increase their respiration and feeding rate in response to ocean acidification to balance the energy cost against increased acidity and CO(2) concentration.  相似文献   

8.
CO(2) ocean storage by which liquefied CO(2) is injected into the deep-sea to mitigate the climate change would increase the CO(2) concentrations of the surrounding seawater. The biological impacts of such dynamic CO(2) environments are, however, unknown. We examined the acute toxicity of temporally changing seawater CO(2) concentrations on juveniles of Sillago japonica. Step-wise increases in ambient CO(2) to fCO(2) (fractional CO(2) concentration of the gas mixture bubbled into seawater) levels of 7% and 9% resulted in mortalities of 0.15 and 0.40-0.67 after 18 h, respectively. In contrast, one-step increases to these CO(2) levels killed all fish within 15 min. Further, a sudden drop of fCO(2) from 9-10% CO(2) to normocapnia (0.038%) killed all the surviving fish within a few minutes. These results demonstrate that impacts of ocean CO(2) storage need to be examined under conditions mimicking the dynamic changes in CO(2) levels expected to occur by the CO(2) injection procedure.  相似文献   

9.
Shallow submarine gas vents in Levante Bay, Vulcano Island (Italy), emit around 3.6t CO2 per day providing a natural laboratory for the study of biogeochemical processes related to seabed CO2 leaks and ocean acidification. The main physico-chemical parameters (T, pH and Eh) were measured at more than 70 stations with 40 seawater samples were collected for chemical analyses. The main gas vent area had high concentrations of dissolved hydrothermal gases, low pH and negative redox values all of which returned to normal seawater values at distances of about 400 m from the main vents. Much of the bay around the vents is corrosive to calcium carbonate; the north shore has a gradient in seawater carbonate chemistry that is well suited to studies of the effects of long-term increases in CO2 levels. This shoreline lacks toxic compounds (such as H2S) and has a gradient in carbonate saturation states.  相似文献   

10.
The relative importance of dissolved and food pathways and the influence of food type in the bioaccumulation and retention of lead in the shrimp Palaemonetes varians were examined using a radiotracer method. Shrimp were exposed to 210Pb-labelled seawater or fed two types of 210Pb-labelled food, viz. mussels or worms. The amount of radiotracer accumulated by shrimp was examined over a 7-day period, followed by a 1-month and a 7-day depuration period for the dissolved and food source, respectively. Steady state in the uptake was reached after 2 days exposure to dissolved lead, with a resultant estimated concentration factor of 98 ± 3. Transfer factors following ingestion of contaminated mussels and worms were lower than unity for both food types, with lead transfer from worms being significantly higher than that from mussels. Accumulation of dissolved Pb by shrimp was found to occur mainly through adsorption on the exoskeleton with a minor accumulation in the internal tissues probably resulting from the intake of seawater for osmoregulation. In contrast, lead taken up from contaminated food was readily absorbed and bound in the internal tissues of P. varians. Although the transfer of lead to P. varians through the ingestion of contaminated food was low (TF < 1%), it still represented 4 to 8% of the lead content in the prey which is a significant additional contribution of lead to the shrimp body burden. Independent of food type, following ingestion of contaminated food, approximately 23–27% of total lead accumulated in shrimp was located in the edible parts (e.g. muscle). Therefore, the food pathway is suggested to be a significant contributor to the lead transfer to humans through ingestion of contaminated shrimp. After exposure to contaminated food, lead loss kinetics were described by a two-component model, whereas Pb loss following direct uptake from seawater was best described by a three-component model. The additional compartment representing 64% of total Pb retained and characterized by a turnover < 10 min, corresponded to lead weakly adsorbed on the exoskeleton and incorporated in the hepatopancreas. Nevertheless, a significant fraction of lead accumulated from the dissolved (2%) and food (52–57%) pathways remained irreversibly retained in the tissues, suggesting that this organism could also serve as an effective long-term bioindicator of lead contamination in marine waters.  相似文献   

11.
The sensitivity of different tissues for assessment of chronic low-dose environmental exposure of fish to alkylphenols (APs) was investigated. We exposed Atlantic cod (Gadus morhua) in the laboratory to tritium labelled 4-tert-butylphenol, 4n-pentylphenol, 4n-hexylphenol, and 4n-heptylphenol via seawater (8 ng/l) and via contaminated feed (5 μg/kg fish per day). Measurements of different fish tissues during eight days of exposure and eight subsequent days of recovery revealed that APs administered via spiked seawater were readily taken up whereas the uptake was far less efficient when APs were administered in spiked feed. AP residues were mainly located in the bile fluid whereas the concentrations in liver were very low, indicating a rapid excretion and the liver-bile axis to be the major route of elimination. The biological half-life of APs in the exposed cod was short, between 10 and 20 h. Our study shows that in connection with biomonitoring of AP exposure in fish, assessment of AP metabolites in bile fluid is a more sensitive tool than detection of parent AP levels in liver or other internal tissues.  相似文献   

12.
揋reenhouse effect?causing global warming has been an important issue of studying climate change. In the latest 100 years, the earth surface temperature has been increased by about 0.4℃—0.8℃[1,2]. And this has been becoming a hotspot of the world[3,4]  相似文献   

13.
A laboratory inorganic carbonate precipitation experiment at high pH of 8.96 to 9.34 was conducted, and the boron isotopic fractionations of the precipitated carbonate were measured. The data show that boron isotopic fractionation factors (αcarb-3) between carbonate and B(OH)3 in seawater range 0.937 and 0.965, with an average value of 0.953. Our results together with those reported by Sanyal and collaborators show that the αcarb-3 values between carbonate and B(OH)3 in solution are not constant but are negatively correlated with the pH of seawater. The measured boron isotopic compositions of carbonate precipitation (δ11Bcarb) do not exactly lie on the best-fit theoretical δ11B4-pH curves and neither do they exactly parallel any theoretical δ11B4-pH curves. Therefore, it is reasonable to argue that a changeable proportion of B(OH)3 with pH of seawater should also be incorporated into carbonate except for the dominant incorporation of B(OH)4 in carbonate. Hence, in the reconstruction of the paleo-pH of seawater from boron isotopes in marine biogenic carbonates, the use of theoretical boron isotopic fractionation factor (α4−3) between B(OH)4 and B(OH)3 is not suitable. Instead, an empirical equation should be established. Supported by National Natural Science Foundation of China (Nos. 40573013 and 40776071), State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (Grant No SKLLQG0502) and State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences  相似文献   

14.
Extensive CO2 vents have been discovered in the Wagner Basin, northern Gulf of California, where they create large areas with lowered seawater pH. Such areas are suitable for investigations of long-term biological effects of ocean acidification and effects of CO2 leakage from subsea carbon capture storage. Here, we show responses of benthic foraminifera to seawater pH gradients at 74–207 m water depth. Living (rose Bengal stained) benthic foraminifera included Nonionella basispinata, Epistominella bradyana and Bulimina marginata. Studies on foraminifera at CO2 vents in the Mediterranean and off Papua New Guinea have shown dramatic long-term effects of acidified seawater. We found living calcareous benthic foraminifera in low pH conditions in the northern Gulf of California, although there was an impoverished species assemblage and evidence of post-mortem test dissolution.  相似文献   

15.
Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO2/pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle.  相似文献   

16.
In August of 1998 the tanker BAHAMAS belonging to the Chem Oil Company containing 12,000 t of concentrated sulphuric acid, had an accident on board, after which estuarine water entered one of the compartments of the tanker, resulting in a vigorous exothermic reaction. The reaction of acid with the metallic interior hull of the ship and the accompanying heat and H2 production resulted in an imminent risk of explosion. To avoid an explosion, given the fact that neutralization was not possible, some of the cargo was discharged into the surrounding water. Neutralization was done in January 1999, after the acid concentration in the tanker had decreased and the concentrations of Fe, Cr and Ni remained elevated. Metal concentrations in bottom sediments showed significant modifications. Leached mercury migrated and redeposited downstream, reaching approximately 76 times the background values. Such an anomaly has a well expressed barrier character. The mechanism for redeposition of Hg and other metals probably followed the pattern: Downstream as a result of dilution and mixing with seawater the pH of acid-water increases, favouring adsorption and/or precipitation of metals. The leading edge of a geochemical barrier, at positions 7-9 of sampling sites (Fig. 1), is confirmed by pH variations in the water. The reestablishment of normal pH occurred after a short time due to the high buffering capacity of seawater and large natural dilution process. The concentration of metals in estuarine water during and after the accident showed insignificant anomalies.  相似文献   

17.
We measured dissolved N(2)O, CH(4), O(2), NH(4)(+), NO(3)(-) and NO(2)(-) on 7 transects along the polluted Adyar River-estuary, SE India and estimated N(2)O and CH(4) emissions using a gas exchange relation and a floating chamber. High NO(2)(-) implied some nitrification of a large anthropogenic NH(4)(+) pool. In the lower catchment CH(4) was maximal (6.3+/-4.3 x 10(4)nM), exceeding the ebullition threshold, whereas strong undersaturation of N(2)O and O(2) implied intense denitrification. Emissions fluxes for the whole Adyar system approximately 2.5 x 10(8) g CH(4)yr(-1) and approximately 2.4 x 10(6)gN(2)O yr(-1) estimated with a gas exchange relation and approximately 2 x 10(9) g CH(4)yr(-1) derived with a floating chamber illustrate the importance of CH(4) ebullition. An equivalent CO(2) flux approximately 1-10 x 10(10)gy r(-1) derived using global warming potentials is equivalent to total Chennai motor vehicle CO(2) emissions in one month. Studies such as this may inform more effective waste management and future compliance with international emissions agreements.  相似文献   

18.
Thirty-four ash layers of Pleistocene and Pliocene age from DSDP Site 192, northwestern Pacific Ocean, have been subjected to detailed chemical and optical study to evaluate: (1) the chemical and optical variability in glass shards from deep-sea ash layers, and (2) secondary changes brought about by prolonged exposure to seawater. Glass shards from approximately half of the ash layers studied were found to have uniform compositions which approach the precision of the microprobe chemical analyses, whereas the remainder are compositionally diverse (e.g., SiO2, variations of 5–15% among shards from the same ash layer) and appear to be the eruptive products of compositionally zoned magma chambers. Optical studies of glass shards confirm the absence of devitrification or the formation of pervasive secondary alteration products. By contrast, chemical studies suggest that the glass shards have experienced progressive hydration with possible minor ion exchange of K, Mg, Ca and Si. The hydration occurs rapidly and leads to a rather uniform water content of 4.5–5% after several hundred thousands of years exposure to seawater. Step-wise heating dehydration experiments, optical effects, and published'oxygen isotope studies indicate that the water of hydration is incorporated uniformly within the glass. Systematic chemical differences between electron microprobe analyses of glass shard interiors and corresponding bulk chemical study by atomic absorption lead us to postulate that glass shard margins have undergone a minor chemical exchange with major cations in seawater. They have gained 0.10–0.20 wt. % K20, MgO, and CaO while losing a corresponding amount of Si2O. Although the glass shards from DSDP Site 192 are hydrated and may have experienced subtle, surficial ion exchange, we stress that they are the most chemically representative samples available of magmas that were explosively erupted from volcanic arcs.  相似文献   

19.
Sodium cyanide (NaCN) is widely used for the capture of reef fish throughout Southeast Asia and causes extensive fish mortality, but the effect of NaCN on reef corals remains debated. To document the impact of cyanide exposure on corals, the species Acropora millepora, Goniopora sp., Favites abdita, Trachyphyllia geoffrio, Plerogyra sp., Heliofungia actinformis, Euphyllia divisa, and Scarophyton sp., and the sea anemone Aiptasia pallida were exposed to varying concentrations of cyanide for varying time periods. Corals were exposed to 50, 100, 300, and 600 mg/l of cyanide ion (CN(-)) for 1-2 min (in seawater, the CN(-) forms hydrocyanic acid). These concentrations are much lower than those reportedly used by fish collectors. Exposed corals and anemones immediately retracted their tentacles and mesenterial filaments, and discharged copious amounts of mucus containing zooxanthellae. Gel electrophoreses techniques found changes in protein expression in both zooxanthellae and host tissue. Corals and anemones exposed to cyanide showed an immediate increase in mitotic cell division of their zooxenthellae, and a decrease in zooxanthellae density. In contrast, zooxanthellae cell division and density remained constant in controls. Histopathological changes included gastrodermal disruption, mesogleal degradation, and increased mucus in coral tissues. Zooxanthellae showed pigment loss, swelling, and deformation. Mortality occurred at all exposure levels. Exposed specimens experienced an increase in the ratio of gram-negative to gram-positive bacteria on the coral surface. The results demonstrate that exposure cyanide causes mortality to corals and anemones, even when applied at lower levels than that used by fish collectors. Even brief exposure to cyanide caused slow-acting and long-term damage to corals and their zooxanthellae.  相似文献   

20.
A large amount of nuclear wastes has been pro-duced due to nuclear weapon development and nuclear electricity generation. One possible resolution for the disposal of the nuclear wastes is to seal them in an underground repository, which requires detailed knowledge on the mobility, chemical behavior and immobilization of radionuclides in underground water. In addition, toxic heavy metals are extensively present in ground and underground water, how to immobilize and remedy these toxic heavy meta…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号