首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地球物理   6篇
地质学   2篇
天文学   2篇
  2020年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1984年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.  相似文献   
2.
Owing to the mathematical similarities between heat and mass transport, the multi-species transport model MT3DMS should be able to simulate heat transport if the effects of buoyancy and changes in viscosity are small. Although in several studies solute models have been successfully applied to simulate heat transport, these studies failed to provide any rigorous test of this approach. In the current study, we carefully evaluate simulations of a single borehole ground source heat pump (GSHP) system in three scenarios: a pure conduction situation, an intermediate case, and a convection-dominated case. Two evaluation approaches are employed: first, MT3DMS heat transport results are compared with analytical solutions. Second, simulations by MT3DMS, which is finite difference, are compared with those by the finite element code FEFLOW and the finite difference code SEAWAT. Both FEFLOW and SEAWAT are designed to simulate heat flow. For each comparison, the computed results are examined based on residual errors. MT3DMS and the analytical solutions compare satisfactorily. MT3DMS and SEAWAT results show very good agreement for all cases. MT3DMS and FEFLOW two-dimensional (2D) and three-dimensional (3D) results show good to very good agreement, except that in 3D there is somewhat deteriorated agreement close to the heat source where the difference in numerical methods is thought to influence the solution. The results suggest that MT3DMS can be successfully applied to simulate GSHP systems, and likely other systems with similar temperature ranges and gradients in saturated porous media.  相似文献   
3.
Orthonormal wavelet expansions are applied to atmospheric surface layer velocity measurements. The effect of intermittent events on the energy spectrum of the inertial subrange is investigated through analysis of wavelet coefficients. The local nature of the orthonormal wavelet transform in physical space makes it possible to identify a relationship between the inertial subrange slope of the local wavelet spectrum and a simple indicator (i.e. the local variance of the signal) of local intermittency buildup. The slope of the local wavelet energy spectrum in the inertial subrange is shown to be sensitive to the presence of intermittent events. During well developed intermittent events (coherent structures), the slope of the energy spectrum is somewhat steeper than -5/3, while in less active regions the slope is found to be flatter than -5/3. When the slopes of local wavelet spectra are ensemble averaged, a slope of -5/3 is recovered for the inertial subrange.  相似文献   
4.
Conclusion The inference is that work produced by an explosive tends to be a result of explosive generated gas pressure rather than the more constant shock energy.The breakage and adiabatic work respond to calculated borehole pressure relationships with a very high correlation. This indicates that the primary mechanism for rock breakage is explosive generated gas pressure.  相似文献   
5.
Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA   总被引:2,自引:1,他引:1  
Mean annual recharge in the Sand Hills of Nebraska (USA) over the 2000?C2009 period was estimated at a 1-km spatial resolution as the difference of mean annual precipitation (P) and evapotranspiration (ET). Monthly P values came from the PRISM dataset, while monthly ET values were derived from linear transformations of the MODIS daytime land-surface temperature values into pixel ET rates with the help of ancillary atmospheric data (air temperature, humidity, and global radiation). The study area receives about 73?mm of recharge (with an error bound of ±73?mm) annually, which is about 14?±?14% of the regional mean annual P value of 533?mm. The largest recharge rates (about 200?±?85?mm or 30?±?12% of P) occur in the south-eastern part of the Sand Hills due to smoother terrain and more abundant precipitation (around 700?mm), while recharge is the smallest (about 40?±?59?mm or 10?±?14% of P) in the western part, where annual precipitation is only about 420?mm. Typically, lakes, wetlands, wet inter-dunal valleys, rivers, irrigated crops (except in the south-eastern region) and certain parts of afforested areas in the south-central portion of the study area act as discharge areas for groundwater.  相似文献   
6.
On the Use of Semi-Logarithmic Plots for Baseflow Separation   总被引:1,自引:0,他引:1  
  相似文献   
7.
Most large-scale evapotranspiration(ET) estimation methods require detailed information of land use, land cover,and/or soil type on top of various atmospheric measurements. The complementary relationship of evaporation(CR) takes advantage of the inherent dynamic feedback mechanisms found in the soil-vegetation-atmosphere interface for its estimation of ET rates without the need of such biogeophysical data. ET estimates over the conterminous United States by a new, globally calibrated, static scaling(GCR-stat) of the generalized complementary relationship(GCR) of evaporation were compared to similar estimates of an existing, calibration-free version(GCR-dyn) of the GCR that employs a temporally varying dynamic scaling. Simplified annual water balances of 327 medium and 18 large watersheds served as ground-truth ET values. With long-term monthly mean forcing, GCR-stat(also utilizing precipitation measurements)outperforms GCR-dyn as the latter cannot fully take advantage of its dynamic scaling with such data of reduced temporal variability. However, in a continuous monthly simulation, GCR-dyn is on a par with GCR-stat, and especially excels in reproducing long-term tendencies in annual catchment ET rates even though it does not require precipitation information.The same GCR-dyn estimates were also compared to similar estimates of eight other popular ET products and they generally outperform all of them. For this reason, a dynamic scaling of the GCR is recommended over a static one for modeling long-term behavior of terrestrial ET.  相似文献   
8.
Monthly evapotranspiration (ET) rates (2000 to 2009) across Nebraska at about 1‐km resolution were obtained by linear transformations of the MODIS (MODerate resolution Imaging Spectroradiometer) daytime surface temperature values with the help of the Priestley–Taylor equation and the complementary relationship of evaporation. For positive values of the mean annual precipitation and ET differences, the mean annual net recharge was found by an additional multiplication of the power‐function‐transformed groundwater vulnerability DRASTIC‐code values. Statewide mean annual net recharge became about 29 mm (i.e., 5% of mean annual precipitation) with the largest recharge rates (in excess of 100 mm/year) found in the eastern Sand Hills and eastern Nebraska. Areas with the largest negative net recharge rates caused by declining groundwater levels due to large‐scale irrigation are found in the south‐western region of the state. Error bounds of the estimated values are within 10% to 15% of the corresponding precipitation rates and the estimated net recharge rates are sensitive to errors in the precipitation and ET values. This study largely confirms earlier base‐flow analysis‐based statewide groundwater recharge estimates when considerations are made for differences in the recharge definitions. The current approach not only provides better spatial resolution than available earlier studies for the region but also quantifies negative net recharge rates that become especially important in numerical modeling of shallow groundwater systems.  相似文献   
9.
One‐km resolution MODIS‐based mean annual evapotranspiration (ET) estimates in combination with PRISM precipitation rates were correlated with depth to groundwater (d) values in the wide alluvial valley of the Platte River in Nebraska for obtaining a net recharge (Rn) vs. d relationship. MODIS cells with irrigation were excluded, yielding a mixture of predominantly range, pasture, grass, and riparian forest covers on sandy soils with a shallow groundwater table. The transition depth (dt) between negative and positive values of the net groundwater recharge was found to be at about 2 (±1) m. Within 1 (±1) m of the surface and at a depth larger than about 7 to 8 (±1) m, the mean annual net recharge became independent of d at a level of about ?4 (±12)% and 13 (±10)%, respectively, of the mean annual precipitation rate. The obtained Rn(d) relationship is based on a calibration‐free ET estimation method and may help in obtaining the net recharge in shallow groundwater areas of negligible surface runoff where sufficient groundwater‐depth data exist.  相似文献   
10.
Abstract– None of the well‐established nitrogen‐related IR absorption bands, common in synthetic and terrestrial diamonds, have been identified in the presolar diamond spectra. In the carbonado diamond spectra, only the single nitrogen impurity (C center) is identified and the assignments of the rest of the nitrogen‐related bands are still debated. It is speculated that the unidentified bands in the nitrogen absorption region are not induced by nitrogen, but rather by nitrogen‐hydrides because in the interstellar environment, nitrogen reacts with hydrogen and forms NH+; NH; NH2; NH3. Among these hydrides, the electronic configuration of NH+ is the closest to carbon. Thus, this ionized nitrogen‐mono‐hydride is the best candidate to substitute carbon in the diamond structure. The bands of the substitutional NH+ defect are deduced by redshifting the irradiation‐induced N+ bands due to the mass of the additional hydrogen. The six bands of the NH+ defects are identified in both the presolar and the carbonado diamond spectra. The new assignments identify all of the nitrogen‐related bands in the spectra, indicating that presolar and carbonado diamonds contain only single nitrogen impurities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号