首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   10篇
地质学   10篇
海洋学   5篇
天文学   7篇
自然地理   9篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有44条查询结果,搜索用时 85 毫秒
1.
2.
The distribution of Sarcocornia pillansii (Moss) A.J. Scott was determined by water-table depth and electrical conductivity (EC) of the groundwater. Where the groundwater was accessible (<1.5 m) and had a low EC (<80 mS cm−1), S. pillansii extended its roots down to the water-table where a suitable water potential gradient was shown to exist between the soil and roots. In areas where the groundwater was too deep and/or hypersaline, the plants grew on hummocks. The unconfined aquifer below the floodplain is linked to the estuary and although diurnal tidal waves were dampened, water-table level fluctuations were recorded between tidal events. The complex geomorphology of the floodplain influences groundwater flow, in turn affecting the distribution of the salt marsh vegetation.  相似文献   
3.
4.
The use of invertebrates as biomonitors of ground water quality is a relatively new approach that has come of age with the development of ground water ecology. The benefits of such an approach are illustrated by four examples of field biomonitoring from several sites in various hydrogeological settings. Contamination of the interstitial zone by heavy metals in some sectors of the Rhóne River (France) was shown by the scarcity of insect species; sewage pollution in the saturated zone of a karstic aquifer was indicated by the low relative abundances of stygobites as compared with those of stygophiles and stygoxenes; and enrichment with organic matter of an underflow was clearly demonstrated by the extremely high density of ground water invertebrates such as oligochaetes, ostracods, and isopods. Examination of the spatial changes in the composition and abundance of invertebrate assemblages was also useful in determining the direction and intensity of water fluxes between a river and its underflow, as well as in delineating the reduced or oxidized zones in a manganese-polluted aquifer. Finally, the selected case studies emphasized the variety of methodological approaches that could be developed in ground water contamination biomonitoring, as well as the complementary and sometimes new information provided by this innovative method in comparison with that obtained by conventional pollution monitoring techniques.  相似文献   
5.
6.
Groundwater warming below cities has become a major environmental issue; but the effect of distinct local anthropogenic sources of heat on urban groundwater temperature distributions is still poorly documented. Our study addressed the local effect of stormwater infiltration on the thermal regime of urban groundwater by examining differences in water temperature beneath stormwater infiltration basins (SIB) and reference sites fed exclusively by direct infiltration of rainwater at the land surface. Stormwater infiltration dramatically increased the thermal amplitude of groundwater at event and season scales. Temperature variation at the scale of rainfall events reached 3 °C and was controlled by the interaction between runoff amount and difference in temperature between stormwater and groundwater. The annual amplitude of groundwater temperature was on average nine times higher below SIB (range: 0·9–8·6 °C) than at reference sites (range: 0–1·2 °C) and increased with catchment area of SIB. Elevated summer temperature of infiltrating stormwater (up to 21 °C) decreased oxygen solubility and stimulated microbial respiration in the soil and vadose zone, thereby lowering dissolved oxygen (DO) concentration in groundwater. The net effect of infiltration on average groundwater temperature depended upon the seasonal distribution of rainfall: groundwater below large SIB warmed up (+0·4 °C) when rainfall occurred predominantly during warm seasons. The thermal effect of stormwater infiltration strongly attenuated with increasing depth below the groundwater table indicating advective heat transport was restricted to the uppermost layers of groundwater. Moreover, excessive groundwater temperature variation at event and season scales can be attenuated by reducing the size of catchment areas drained by SIB and by promoting source control drainage systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
The Dvurechenskii mud volcano (DMV) is located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea). The DMV was studied during the RV Meteor expedition M72/2 as an example of an active mud volcano system, to investigate the significance of submarine mud volcanism for the methane and sulfide budget of the anoxic Black Sea hydrosphere. Our studies included benthic fluxes of methane and sulfide, as well as the factors controlling transport, consumption and production of both compounds within the sediment. The pie-shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at its summit north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was repressed in this zone due to the upward flow of sulfate-depleted fluids through recently deposited subsurface muds, apparently limiting microbial methanotrophic activity. Consequently, the emission of dissolved methane into the water column was high, with an estimated rate of 0.46 mol m−2 d−1. On the wide plateau and edge of the mud volcano surrounding the summit, fluid flow and total methane flux were lower, allowing higher SR and AOM rates correlated with an increase in sulfate penetration into the sediment. Here, between 50% and 70% of the methane flux (0.07-0.1 mol m−2 d−1) was consumed within the upper 10 cm of the sediment. The overall amount of dissolved methane released from the entire mud volcano structure into the water column was significant with a discharge of 1.3 × 107 mol yr−1. The DMV maintains also high areal rates of methane-fueled sulfide production and emission of on average 0.05 mol m−2 d−1. This is a difference to mud volcanoes in oxic waters, which emit similar amounts of methane, but not sulfide. However, based on a comparison of this and other mud volcanoes of the Black Sea, we conclude that sulfide and methane emission into the hydrosphere from deep-water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.  相似文献   
8.
Quantifying spatial and temporal dynamics of organic matter (OM) is critical both for understanding ecosystem functioning and for predicting impacts of landscape change. To determine the influence of different habitats and coarse particulate OM (CPOM) types upon floodplain OM dynamics, we quantified aerial input, lateral surface transfer, and surface storage of CPOM over an annual cycle on the near-natural floodplain of the River Tagliamento in NE-Italy. Using these data, we modelled floodplain leaf dynamics, taking account of the spatial distribution and hydrologic connectivity of habitats, and using leaf storage as a response variable. Mean aerial CPOM input to the floodplain was similar from riparian forest and islands, but surface transfer was greater from islands, supporting the suggestion that these habitats act as “islands of fertility” along braided rivers. Leaves were the lateral conveyor of energy to more open parts of the floodplain, whereas CPOM was mainly stored as small wood in vegetated islands and riparian forest. Simulating the loss of habitat diversity (islands, ponds) decreased leaf storage on the whole floodplain, on exposed gravel and in large wood accumulations. In contrast, damming (loss of islands, ponds and floods plus floodplain overgrowth) greatly increased storage on exposed gravel. A random shuffle of habitats led to a storage increase on exposed gravel, while that in large wood accumulations and ponds declined. These results disentangle some of the complexities of CPOM dynamics in floodplain ecosystems, illustrate the value of models in understanding ecosystem functioning at a landscape level, and directly inform river management practice.  相似文献   
9.
Despite vigorous tidal and wind mixing, observations in an estuarine tidal inlet in the Wadden Sea show that during part of the tidal cycle, vertical stratification and internal waves may still develop. Acoustic Doppler current profiler (ADCP) and conductivity, temperature, depth observations, collected over the past 6 years at 13 h anchor stations (ASs), reveal that these occur especially during slack tide, when there is little wind and large freshwater discharge from nearby Lake IJssel. Measurements with a moored ADCP show that in the same tidal phase, strong cross-channel circulation develops, which may suddenly reverse circulation sense due to passing density fronts. In the vertically stratified phase that follows after the front passage, propagating mode-one solitary internal waves are observed. These are resonantly generated during decelerating tidal ebb currents when the (shear) flow passes a transcritical regime (Froude number equal to 1). A combination of photographs (including one from the International Space Station), bathymetric data, and ASs data leads to the discovery of yet another source of internal waves in this area, produced during slackening tide by propagating lee waves that develop over a deep trench. We suggest that both the cross-channel circulation as well as the (solitary) internal waves may locally be of importance for the (re)distribution and transport of sediments and nutrients and may influence tidally averaged transports.  相似文献   
10.
Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ??600?m in a SW?CNE direction with chimneys occurring over a ??145-m depth interval, between ??1,690 and 1,545?m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2?C3?m in height, with some reaching 6?C7?m. Their ages (at time of sampling) fall broadly into three groups: <4, 23, and 35?years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2?C3?m thick. Two main types of chimney predominate: Cu-rich (up to 28.5?wt.% Cu) and, more commonly, Zn-rich (up to 43.8?wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91?ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (??0.5?m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (??300°C), acidic (pH????2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (??122°C), more acidic (pH?1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3?years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206?mM/kg at the Cone site); high CO2/3He; negative ??D and ??18OH2O for vent fluids; negative ??34S for sulfides (to ?4.6??), sulfur (to ?10.2??), and ??15N2 (to ?3.5??); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu?+?Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of ??magmatic?? mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (??2.5?km long), narrow (??300-m diameter) ??pipes,?? consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号