首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   0篇
地球物理   1篇
地质学   100篇
天文学   1篇
  2022年   5篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2013年   12篇
  2012年   3篇
  2011年   11篇
  2010年   6篇
  2009年   7篇
  2008年   7篇
  2007年   18篇
  2006年   8篇
排序方式: 共有102条查询结果,搜索用时 108 毫秒
1.
Elpasolite, K2NaAlF6, has been found for the first time in a pegmatite related to peralkaline foid syenite at Mt. Koashva, Khibiny alkaline pluton, Kola Peninsula, Russia, as pale pink octahedral crystals up to 2 mm in size within cavities in the natrolite core of pegmatite in association with amicite, sodalite, aegirine, pectolite, catapleiite, sitinakite, lemmleinite-K, and vinogradovite. The chemical composition determined with an electron microprobe is as follows, wt %: 31.53 K; 9.22 Na; 11.20 Al; 47.21 F; total is 99.16. The empirical formula is K1.96Na0.98Al1.01F6.05. The infrared spectrum is given. The crystal structure has been refined to R = 0.030, space group Fm $ \bar 3 Elpasolite, K2NaAlF6, has been found for the first time in a pegmatite related to peralkaline foid syenite at Mt. Koashva, Khibiny alkaline pluton, Kola Peninsula, Russia, as pale pink octahedral crystals up to 2 mm in size within cavities in the natrolite core of pegmatite in association with amicite, sodalite, aegirine, pectolite, catapleiite, sitinakite, lemmleinite-K, and vinogradovite. The chemical composition determined with an electron microprobe is as follows, wt %: 31.53 K; 9.22 Na; 11.20 Al; 47.21 F; total is 99.16. The empirical formula is K1.96Na0.98Al1.01F6.05. The infrared spectrum is given. The crystal structure has been refined to R = 0.030, space group Fm m, a = 8.092 ?. The result of a special X-ray powder diffraction study confirmed the suggestion made by Morss (1974) that reflections violating space group Fm m in some published X-ray powder patterns of natural elpasolite are Kβ-lines. Original Russian Text ? I.V. Pekov, N.V. Chukanov, N.N. Kononkova, N.V. Zubkova, M.Kh. Rabadanov, D.Yu. Pushcharovsky, 2007, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2007, No. 6, pp. 76–84.  相似文献   
2.
Geology of Ore Deposits - The crystal structure of lemanskiite is determined for the first time (R = 0.019) and the mineral is redefined. Its chemical formula, crystal system, space group and...  相似文献   
3.

A number of rare phosphates have been found in specimens from the Chalotskoe pegmatite deposit, Transbaikal region, Russia: väyrynenite, MnBe[PO4](OH,F); parascholzite, CaZn2[PO4]2 · 2H2O; messelite, Ca2(Fe2+,Mn)[PO4]2 · 2H2O; eosphorite, MnAl[PO4](OH)2 · H2O; moraesite, Be2[PO4](OH)4H2O; and fluorapatite. Väyrynenite forms pink grains 2–3 mm in size, less frequent prismatic crystals up to 0.8 × 3.0 cm, and spheres up to 3 mm in diameter. Parascholzite occurs as pockets up to 0.6 × 1.0 cm composed from snow-white small grains. Messelite forms pale yellow honeycomb grains and poorly shaped crystals up to 1 mm. Eosphorite has been seen in the Chalotskoe pegmatites before, but it has not been studied in detail. It occurs as red-brown prismatic crystals up to 8 cm in length, occasionally forming openbook- like aggregates and pink to pale pink grains up to 5 mm in size. Moraesite forms snow-white fibrous aggregates up to 5 × 6 mm, together with white spheres and short prismatic crystals of fluorapatite up to 1 mm. Microcline, albite, quartz, muscovite, beryl, schorl, almandine-spessartine, columbite-(Fe), and bertrandite are associated minerals. Väyrynenite and parascholzite are found for the first time in Russia.

  相似文献   
4.
5.
6.
A new mineral, yegorovite, has been identified in the late hydrothermal, low-temperature assemblage of the Palitra hyperalkaline pegmatite at Mt. Kedykverpakhk, Lovozero alkaline pluton, Kola Peninsula, Russia. The mineral is intimately associated with revdite and megacyclite, earlier natrosilite, microcline, and villiaumite. Yegorovite occurs as coarse, usually split prismatic (up to 0.05 × 0.15 × 1 mm) or lamellar (up to 0.05 × 0.7 × 0.8 mm) crystals. Polysynthetic twins and parallel intergrowths are typical. Mineral individuals are combined in bunches or chaotic groups (up to 2 mm); radial-lamellar clusters are less frequent. Yegorovite is colorless, transparent with vitreous luster. Cleavage is perfect parallel to (010) and (001). Fracture is splintery; crystals are readily split into acicular fragments. The Mohs hardness is ~2. Density is 1.90(2) g/cm3 (meas) and 1.92 g/cm3 (calc). Yegorovite is biaxial (?), with α = 1.474(2), β = 1.479(2), and γ = 1.482(2), 2V meas > 70°, 2V calc = 75°. The optical orientation is Xa ~ 15°, Y = c, Z = b. The IR spectrum is given. The chemical composition determined using an electron microprobe (H2O determined from total deficiency) is (wt %): 23.28 Na2O, 45.45 SiO2, 31.27 H2Ocalc; the total is 100.00. The empirical formula is Na3.98Si4.01O8.02(OH)3.98 · 7.205H2O. The idealized formula is Na4[Si4O8(OH)4] · 7H2O. Yegorovite is monoclinic, space group P21/c. The unit-cell dimensions are a = 9.874, b= 12.398, c = 14.897 Å, β = 104.68°, V = 1764.3 Å3, Z = 4. The strongest reflections in the X-ray powder pattern (d, Å (I, %)([hkl]) are 7.21(70)[002], 6.21(72)[012, 020], 4.696(44)[022], 4.003(49)[211], 3.734(46)[\(\bar 2\) 13], 3.116(100)[024, 040], 2.463(38)[\(\bar 4\)02, \(\bar 2\)43]. The crystal structure was studied by single-crystal method, R hkl = 0.0745. Yegorovite is a representative of a new structural type. Its structure consists of single chains of Si tetrahedrons [Si4O8(OH)4]∞ and sixfold polyhedrons of two types: [NaO(OH)2(H2O)3] and [NaO(OH)(H2O)4] centered by Na. The mineral was named in memory of Yu. K. Yegorov-Tismenko (1938–2007), outstanding Russian crystallographer and crystallochemist. The type material of yegorovite has been deposited at the Fersman Mineralogical Museum of Russian Academy of Sciences, Moscow.  相似文献   
7.
Geology of Ore Deposits - Fluoborite extremely close to the fluorine endmember of the fluoborite Mg3[BO3]F3–hydroxylborite Mg3[BO3](ОН)3 series has been found in exhalations of...  相似文献   
8.
A new mineral, mendigite (IMA no. 2014-007), isostructural with bustamite, has been found in the In den Dellen pumice quarry near Mendig, Laacher Lake area, Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Associated minerals are sanidine, nosean, rhodonite, tephroite, magnetite, and a pyrochlore-group mineral. Mendigite occurs as clusters of long-prismatic crystals (up to 0.1 × 0.2 × 2.5 mm in size) in cavities within sanidinite. The color is dark brown with a brown streak. Perfect cleavage is parallel to (001). D calc = 3.56 g/cm3. The IR spectrum shows the absence of H2O and OH groups. Mendigite is biaxial (–), α = 1.722 (calc), β = 1.782(5), γ = 1.796(5), 2V meas = 50(10)°. The chemical composition (electron microprobe, mean of 4 point analyses, the Mn2+/Mn3+ ratio determined from structural data and charge-balance constraints) is as follows (wt %): 0.36 MgO, 10.78 CaO, 37.47 MnO, 2.91 Mn2O3, 4.42 Fe2O3, 1.08 Al2O3, 43.80 SiO2, total 100.82. The empirical formula is Mn2.00(Mn1.33Ca0.67) (Mn0.50 2+ Mn0.28 3+ Fe0.15 3+ Mg0.07)(Ca0.80 (Mn0.20 2+)(Si5.57 Fe0.27 3+ Al0.16O18). The idealized formula is Mn2Mn2MnCa(Si3O9)2. The crystal structure has been refined for a single crystal. Mendigite is triclinic, space group \(P\bar 1\); the unit-cell parameters are a = 7.0993(4), b = 7.6370(5), c = 7.7037(4) Å, α = 79.58(1)°, β = 62.62(1)°, γ = 76.47(1)°; V = 359.29(4) Å3, Z = 1. The strongest reflections on the X-ray powder diffraction pattern [d, Å (I, %) (hkl)] are: 3.72 (32) (020), 3.40 (20) (002, 021), 3.199 (25) (012), 3.000 (26), (\(01\bar 2\), \(1\bar 20\)), 2.885 (100) (221, \(2\bar 11\), \(1\bar 21\)), 2.691 (21) (222, \(2\bar 10\)), 2.397 (21) (\(02\bar 2\), \(21\bar 1\), 203, 031), 1.774 (37) (412, \(3\bar 21\)). The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4420/1.  相似文献   
9.
Phosphoinnelite, an analogue of innelite with P > S, has been found in a peralkaline pegmatite vein crosscutting calcite carbonatite at the phlogopite deposit, Kovdor pluton, Kola Peninsula. Cancrinite (partly replaced with thomsonite-Ca), orthoclase, aegirine-augite, pectolite, magnesioarfvedsonite, golyshevite, and fluorapatite are associated minerals. Phosphoinnelite occurs as lath-shaped crystals up to 0.2 × 1 × 6 mm in size, which are combined typically in bunch-, sheaf-, and rosettelike segregations. The color is yellow-brown, with vitreous luster on crystal faces and greasy luster on broken surfaces. The mineral is transparent. The streak is pale yellowish. Phosphoinnelite is brittle, with perfect cleavage parallel to the {010} and good cleavage parallel to the {100}; the fracture is stepped. The Mohs hardness is 4.5 to 5. Density is 3.82 g/cm3 (meas.) and 3.92 g/cm3 (calc.). Phosphoinnelite is biaxial (+), α = 1.730, β = 1.745, and γ = 1.764, 2V (meas.) is close to 90°. Optical orientation is Z^c ∼ 5°. Chemical composition determined by electron microprobe is as follows (wt %): 6.06 Na2O, 0.04 K2O, 0.15 CaO, 0.99 SrO, 41.60 BaO, 0.64 MgO, 1.07 MnO, 1.55 Fe2O3, 0.27 Al2O3, 17.83 SiO2, 16.88 TiO2, 0.74 Nb2O5, 5.93 P2O5, 5.29 SO3, 0.14 F, −O=F2 = −0.06, total is 99.12. The empirical formula calculated on the basis of (Si,Al)4O14 is (Ba3.59Sr0.13K0.01)Σ3.73(Na2.59Mg0.21Ca0.04)Σ3.04(Ti2.80Fe 0.26 3+ Nb0.07)Σ3.13[(Si3.93Al0.07)Σ4O14(P1.11S0.87)Σ1.98O7.96](O2.975F0.10)Σ3.075. The simplified formula is Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3. The mineral is triclinic, space group P or P1. The unit cell dimensions are a = 5.38, b = 7.10, c = 14.76 ?; α = 99.00°, β = 94.94°, γ = 90.14°; and V = 555 ?3, Z = 1. The strongest lines of the X-ray powder pattern [d, ? in (I)(hkl)] are: 14.5(100)(001), 3.455(40)(103), 3.382(35)(0 2), 2.921(35)(005), 2.810(40)(1 4), 2.683(90)(200, 01), 2.133(80)( 2), 2.059(40)(204, 1 3, 221), 1.772(30)(0 1, 1 7, 2 2, 2 3). The infrared spectrum is demonstrated. An admixture of P substituting S has been detected in the innelite samples from the Inagli pluton (South Yakutia, Russia). An innelite-phosphoinnelite series with a variable S/P ratio has been discovered. The type material of phosphoinnelite has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. Original Russian Text ? I.V. Pekov, N.V. Chukanov, I.M. Kulikova, D.I. Belakovsky, 2006, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2006, No. 3, pp. 52–60. Considered and recommended by the Commission on New Minerals and Mineral Names, Russian Mineralogical Society, May 9, 2005. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, July 4, 2005 (proposal 2005-022).  相似文献   
10.
Based on a study of samples found in the Khibiny (Mt. Rasvumchorr: the holotype) and Lovozero (Mts Alluaiv and Vavnbed) alkaline complexes on the Kola Peninsula, Russia, tinnunculite was approved by the IMA Commission on New Minerals, Nomenclature, and Classification as a valid mineral species (IMA no. 2015-02la) and, taking into account a revisory examination of the original material from burnt dumps of coal mines in the southern Urals, it was redefined as crystalline uric acid dihydrate (UAD), C5H4N4O3 · 2H2O. Tinnunculite is poultry manure mineralized in biogeochemical systems, which could be defined as “guano microdeposits.” The mineral occurs as prismatic or tabular crystals up to 0.01 × 0.1 × 0.2 mm in size and clusters of them, as well as crystalline or microglobular crusts. Tinnunculite is transparent or translucent, colorless, white, yellowish, reddish or pale lilac. Crystals show vitreous luster. The mineral is soft and brittle, with a distinct (010) cleavage. Dcalc = 1.68 g/cm3 (holotype). Tinnunculite is optically biaxial (–), α = 1.503(3), β = 1.712(3), γ = 1.74(1), 2Vobs = 40(10)°. The IR spectrum is given. The chemical composition of the holotype sample (electron microprobe data, content of H is calculated by UAD stoichiometry) is as follows, wt %: 37.5 О, 28.4 С, 27.0 N, 3.8 Hcalc, total 96.7. The empirical formula calculated on the basis of (C + N+ O) = 14 apfu is: C4.99H8N4.07O4.94. Tinnunculite is monoclinic, space group (by analogy with synthetic UAD) P21/c. The unit cell parameters of the holotype sample (single crystal XRD data) are a = 7.37(4), b = 6.326(16), c = 17.59(4) Å, β = 90(1)°, V = 820(5) Å3, Z = 4. The strongest reflections in the XRD pattern (d, Å–I[hkl]) are 8.82–84[002], 5.97–15[011], 5.63–24[102?, 102], 4.22–22[112], 3.24–27[114?,114], 3.18–100[210], 3.12–44[211?, 211], 2.576–14[024].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号