首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2020年   1篇
  2013年   3篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Representative sandstone samples were collected from the surface-type section of the Shajara Formation of the Permo-Carboniferous Unayzah Group for reservoir characterization through fractal dimension investigation. Two models based on mercury intrusion technique were employed to represent the pores characteristics of these sandstones. The results show that realistic dimensions and outstanding fractal features of porous structures in Shajara sandstones, when these materials are correlated by thermodynamic model and 3-D fractal model of mercury intrusion. On the basis of sub-Unayzah unconformity, sub-Middle Shajara local unconformity, mudstone of the Middle Shajara and sub-Khuff unconformity, the three porous and permeable sandstone units of Shajara Formation were treated separately and classified here into three fractal dimension units. The units from base to top are: Lower Shajara Fractal Dimension Unit, Middle Shajara Fractal Dimension Unit, and Upper Shajara Fractal Dimension Unit. The thermodynamic model and 3-D fractal model were effectively used to characterize the porous structures of Shajara sandstones in logical and quantitative way.  相似文献   
2.
The creep property of rock under cyclic loading is very important in civil engineering. In order to establish a novel constitutive equation for rock under cyclic loading, a fractional-order viscoplastic body under cyclic loading was constructed based on fractional-order viscous element. A fractional-order visco-elastoplastic model (FVEPM) for rock was established by connecting constructed fractional-order viscoplastic body with Burgers model. The model was a Burgers model when the maximum value of cyclic loading was less than the critical strength of rock; otherwise, it was a FVEPM which can be used to reflect the transient, steady-state, and tertiary creep phases of rock. The cyclic loading was decomposed into a static load and a cyclic loading with a zero average stress. According to rheological mechanics theory, the rheology constitutive equation of rock under the static load can be derived. According to viscoelastic mechanics theory, the constitutive equation under cyclic loading with a zero average stress was established by introducing the variation parameters of energy storage and energy dissipation compliance caused by rock damage and fracture. Finally, a new dynamic constitutive equation of rock cyclic loading can be obtained by superimposing the constitutive equation under static load and cyclic loading with a zero average stress. Compared with existing test results of rock under cyclic loading, the proposed constitutive model can be used to describe the creep characteristics of rock under cyclic loading and reflect the presented fluctuation of strain curve of rock under cyclic loading.  相似文献   
3.
The main objectives of this paper are to study crude oil migration as a toxic fluid, its rate of penetration, and its consequences for eventual treatment. To achieve these objectives, an experimental model was designed comprising two separated columns, filled with soil and other rock types to simulate a real case scenario. Crude oil penetration depth versus time was recorded by taking soil samples whereas water samples were collected from the wet system to analyze the penetrating liquid. The results show that penetration depth was greater in the wet system during the early stages rather than in the dry system. However, with time, penetration becomes more developed in both systems. Overall penetration in the final stage was found to be significantly higher in the dry system. In addition, it was observed that during crude oil migration in dry system, chromatographic separation of crude oil components has occurred obviously. The obtained results reveal that immediate treatment must be performed in both systems but particularly in the wet system, due to its higher initial penetration rate.  相似文献   
4.
In this research, effect of temperature, pressure, salinity, surfactant concentration, and surfactant type on interfacial tension (IFT) and critical micelle concentration of Saudi Arabian crude oil and various aqueous phases were investigated. The temperature ranged from ambient condition to 90°C, and the pressures were varied from atmospheric to 4,000 psi (27.58 MPa). Surfactant solutions were prepared using several aqueous phases, i.e., purified water, 10% brine consisting of 100% NaCl, 10% brine consisting of 95% NaCl and 5% CaCl2, and 10% brine consisting of 83% NaCl and 17% CaCl2. Out of 13 commercial surfactants, only three surfactants showed good solubility in pure water and brine. Those are Zonyl FSE Fluorosurfactant®, Triton X-100®, and Triton X-405®. Therefore, they were investigated thoroughly by measuring their efficiency in reducing the crude oil-aqueous phase IFT. Based on this screening process, laboratory surfactant flooding experiments for crude oil recovery were conducted using Triton X-405 and Triton X-100. The chemical flood was made at both original oil in place and at residual oil in place subsequent to conventional water flooding. Based on the obtained results, both surfactants were efficient, and more oil was recovered than that obtained through water flooding. Comparing both surfactant solutions, it was observed that Triton X-405 was more efficient than Triton X-100 at the same surfactant concentration and reservoir conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号