首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
测绘学   2篇
大气科学   3篇
地球物理   15篇
地质学   5篇
  2013年   4篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1970年   1篇
排序方式: 共有25条查询结果,搜索用时 453 毫秒
1.
Soil moisture estimation using microwave remote sensing faces challenges of the segregation of influences mainly from roughness and vegetation. Under static surface conditions, it was found that Radarsat C-band SAR shows reasonably good correlation and sensitivity with changing soil moisture. Dynamic surface and vegetation conditions are supposed to result in a substantial reduction in radar sensitivity to soil moisture. A C-band scatterometer system (5.2 GHz) with a multi-polarization and multi-angular configuration was used 12 times to sense the soil moisture over a tall vegetated grass field. A score of vegetation and soil parameters were recorded on every occasion of the experiment. Three radar backscattering models Viz., Integral Equation Model (IEM), an empirical model and a volume scattering model, have been used to predict the backscattering phenomena. The volume scattering model, using the Distorted Born Approximation, is found to predict the backscattering phenomena reasonably well. But the surface scattering models are expectedly found to be inadequate for the purpose. The temporal variation of soil moisture does show good empirical relationship with the observed radar backscattering. But as the vegetation biomass increases, the radar shows higher sensitivity to the vegetation parameters compared to surface characteristics. A sensitivity analysis of the volume scattering model for all the parameters also reveals that the radar is more sensitive to plant parameters under high biomass conditions, particularly vegetation water content, but the sensitivity to surface characteristics, particularly to soil moisture, is also appreciable.  相似文献   
2.
Abstract

Changes in water resources availability, as affected by global climate warming, together with changes in water withdrawal, could influence the world water resources stress situation. In this study, we investigate how the world water resources situation will likely change under the Special Report on Emissions Scenarios (SRES) by integrating water withdrawal projections. First, the potential changes in water resources availability are investigated by a multi-model analysis of the ensemble outputs of six general circulation models (GCMs) from organizations worldwide. The analysis suggests that, while climate warming might increase water resources availability to human society, there is a large discrepancy in the size of the water resource depending on the GCM used. Secondly, the changes in water-stressed basins and the number of people living in them are evaluated by two indices at the basin scale. The numbers were projected to increase in the future and possibly to be doubled in the 2050s for the three SRES scenarios A1b, A2 and B1. Finally, the relative impacts of population growth, water use change and climate warming on world water resources are investigated using the global highly water-stressed population as an overall indicator. The results suggest that population and socio-economic development are the major drivers of growing world water resources stress. Even though water availability was projected to increase under different warming scenarios, the reduction of world water stress is very limited. The principal alternative to sustainable governance of world water resources is to improve water-use efficiency globally by effectively reducing net water withdrawal.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   
3.
Groundwater recharge and discharge in the Akesu alluvial plain were estimated using a water balance method. The Akesu alluvial plain (4842 km2) is an oasis located in the hyperarid Tarim River basin of central Asia. The land along the Akesu River has a long history of agricultural development and the irrigation area is highly dependent on water withdrawals from the river. We present a water balance methodology to describe (a) surface water and groundwater interaction and (b) groundwater interaction between irrigated and non‐irrigated areas. Groundwater is recharged from the irrigation system and discharged in the non‐irrigated area. Uncultivated vegetation and wetlands are supplied from groundwater in the hyperarid environment. Results show that about 90% of groundwater recharge came from canal loss and field infiltration. The groundwater flow from irrigated to non‐irrigated areas was about 70% of non‐irrigated area recharge and acted as subsurface drainage for the irrigation area. This desalinated the irrigation area and supplied water to the non‐irrigated area. Salt moved to the non‐irrigation area following subsurface drainage. We conclude that the flooding of the Akesu River is a supplemental groundwater replenishment mechanism: the river desalinates the alluvial plain by recharging fresh water in summer and draining saline regeneration water in winter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
4.
5.
Stream‐gauge data indicate that the flow of the Yellow River has declined during the past several decades. Zero flow in sections of the river channel, i.e. the Yellow River drying‐up phenomenon, has occurred since the 1970s. In this paper we present an analysis of changes in the spatial patterns of climatic and vegetation condition data in the Yellow River basin based on data from meteorological stations and satellites. The climatic data are from 1960 to 2000 and the vegetation condition data are from 1982 to 2000. The angular‐distance‐weighted interpolation method is used to get climatic data coverage from station observations. The spatial distribution of tendency is detected with Student's t‐test. The spatial patterns of climatic and vegetation condition change was analysed together with the statistical data on human activities. The analysis indicates that the precipitation decreases and temperature increases in most parts of the Yellow River basin, the evaporative demand of the atmosphere decreases in the upper reaches and increases in the lower reaches, and human activities have improved the vegetation condition in the irrigation districts. The Loess Plateau, the Tibetan Plateau, and the irrigation districts are respectively suggested as precipitation, temperature, and human activity hot spots of the Yellow River drying‐up phenomenon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
6.
The 1995 Northern Niigata Earthquake (M 6.0) occurred at a shallow depth in the Niigata seismic gap. The anomaly areas in temperature, electrical conductivity and Cl- concentration of groundwater trend northeast as linear distribution in the epicentral area and are approximately coincident with the area of the seismic intensity 6 (JMA scale). The distributions of seismic intensity 6 and groundwater anomalies convincingly imaged the presence of a buried active fault beneath the epicentral area. The occurrence of this earthquake and the anomalies of groundwater were related to the expulsion of geopressured hydrothermal system (GHS). All epicenters of the destructive earthquakes along the Shinanogawa seismic belt are actually located in the buried active fault zones characterized by the areas of temperature and geochemical anomalies of groundwater. These earthquakes might have been triggered by the activity of GHS. The expulsion of GHS along an active fault in combination with the thermal softening of fault  相似文献   
7.
Wind speed profiles above a forest canopy relate to scalar exchange between the forest canopy and the atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can be classified by a stability index developed assuming wind flow above a flat plane. However, can such a stability index be used to classify vertical wind speed profiles observed above a sloping forest at nighttime, where drainage flow often occurs? This paper examines the use of the bulk Richardson number to classify wind speed profiles observed above a sloping forest at nighttime. Wind speed profiles above a sloping forest were classified by the bulk Richardson number Ri B . Use of Ri B distinguished between drainage flow, shear flow, and transitional flow from drainage flow to shear flow. These results suggest that Ri B is useful to interpret nighttime CO2 and energy fluxes above a sloping forest. Through clear observational evidence, we also show that the reference height should be high enough to avoid drainage-flow effects when calculating Ri B .  相似文献   
8.
The sensitivity of land surface energy partitioning to near-surface air temperature (T a) is a critical issue to understand the interaction between land surface and climatic system. Thus, studies with in situ observed data compiled from various climates and ecosystems are required. The relations derived from such empirical analyses are useful for developing accurate estimation methods of energy partitioning. In this study, the effect of T a on land surface energy partitioning is evaluated by using flux measurement data compiled from a global network of eddy covariance tower sites (FLUXNET). According to the analysis of 25 FLUXNET sites (60 site-years) data, the Bowen ratio is found to have a linear relation with the bulk surface resistance normalized by aerodynamic and climatological resistance parameters in general, of which the slope and intercept are dependent on T a. Energy partitioning in warmer atmosphere is less sensitive to changes in land surface conditions. In addition, a negative relation is found between Bowen ratio and T a, and this relation is stronger above less vegetated surface and under low vapor pressure deficit and low received radiative energy condition. The empirical results obtained in this study are expected to be useful in gaining better understanding of alternating surface energy partitioning under increasing T a.  相似文献   
9.
It has been often accepted that rising troposphere temperatures will lead to higher precipitation intensities. This argument is based on the Clausius?CClapeyron (C?CC) relation, which indicates an increase in atmospheric moisture storage capacity of approximately 7?% K?1. However, recent studies carried out in mid-latitude regions indicate that changes in precipitation intensity as a function of temperature do not necessarily follow the C?CC relation. This study aimed to evaluate the correlation between precipitation extremes and temperature in tropical regions, using measured data obtained at low latitude ranges over Brazil. The results indicate that, at daily timescale, the C?CC relation alone is unlikely to explain the relation between precipitation extremes and temperatures in tropical regions. Additional aspects, such as moisture availability and the duration of precipitation events, should be further analyzed to allow a comprehensive understanding of the relationship between temperature and precipitation intensity. Moreover, we show that in tropical regions, higher temperatures may reduce the magnitude of extreme precipitation events at daily timescales, independent of the season of the year.  相似文献   
10.
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号