首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  国内免费   1篇
地球物理   14篇
地质学   3篇
海洋学   7篇
综合类   1篇
  2021年   3篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
排序方式: 共有25条查询结果,搜索用时 515 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
3.
Effects of high-order nonlinear interactions on unidirectional wave trains   总被引:2,自引:0,他引:2  
Numerical simulations of gravity waves with high-order nonlinearities in two-dimensional domain are performed by using the pseudo spectral method. High-order nonlinearities more than third order excite apparently chaotic evolutions of the Fourier energy in deep water random waves. The high-order nonlinearities increase kurtosis, wave height distribution and Hmax/H1/3 in deep water and decrease these wave statistics in shallow water. Moreover, they can generate a single extreme high wave with an outstanding crest height in deep water. High-order nonlinearities (more than third order) can be regarded as one cause of freak waves in deep water.  相似文献   
4.
A statistical model is developed to predict wave overtopping volume and rate of extreme waves on a fixed deck. The probability density function for the volume and rate of overtopping water are formulated based on the truncated Weibull distribution with the assumption of local sinusoidal profile for small amplitude waves. Sensitivity to the wave nonlinearity parameter and deck clearance is discussed. The statistical model is compared to laboratory data of the instantaneous free surface elevation measured in front of a fixed deck, and overtopping volume and overtopping rate measured at the leading edge of the deck. The statistical theory compared well with the measured exceedance probability seaward of the deck. The model prediction of the exceedance probability of deck overtopping gave qualitatively good agreement for large overtopping values.  相似文献   
5.
Intensive water sampling in conjunction with hydrological observations was conducted during three different rainstorms in order to understand the effects of rainfall events on the temporal variation of streamwater chemistry in a small headwater forest catchment. Concentrations of Na+ and SO42? decreased as the discharge rate increased. Hydrograph separation of the components was made using the three‐component model based on the end‐members mixing analysis (EMMA). The three end‐members were:
  • 1 the groundwater in the saturated zone that prescribes the chemistry of the baseflow;
  • 2 the throughfall that dilutes the streamwater;
  • 3 the groundwater in the transient saturated zone prescribed, which was dependent on the groundwater level.
When the groundwater level was lower, only the two components, groundwater in the saturated zone and throughfall, affected the streamwater chemistry. When the groundwater level rose and the saturated zone spread, the groundwater in the transient saturated zone became the third component. When the groundwater in the transient saturated zone contributed to the discharge, this component became the dominant source and the streamwater chemistry was affected by the groundwater chemistry in the transient saturated zone. When this component was discharged as the saturation overland flow, the streamwater chemistry was greatly affected by this component. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
6.
The biological and physical controls on microbial processes that produce and consume N2O in soils are highly complex. Isotopomer ratios of N2O, with abundance of 14N15N16O, 15N14N16O, and 14N14N18O relative to 14N14N16O, are promising for elucidation of N2O biogeochemistry in an intact ecosystem. Site preference, the nitrogen isotope ratio of the central nitrogen atom minus that of the terminal nitrogen atom, is useful to distinguish between N2O via hydroxylamine oxidation and N2O via nitrite reduction.We applied this isotopomer analysis to a groundwater system in a temperate coniferous-forested ecosystem. Results of a previous study at this location showed that the N2O concentration in groundwater varied greatly according to groundwater chemistry, i.e. NO3, DOC, and DO, although apportionment of N2O production to nitrification or denitrification was ambiguous. Our isotopic analysis (δ15N and δ18O) of NO3 and N2O implies that denitrification is the dominant production process of N2O, but definitive information is not derived from δ15N and δ18O analysis because of large variations in isotopic fractionations during production and consumption of N2O. However, the N2O site preference and the difference in δ15N between NO3 and N2O indicate that nitrification contributes to total N2O production and that most measured N2O has been subjected to further N2O reduction to N2. The implications of N2O biogeochemistry derived from isotope and isotopomer data differ entirely from those derived from conventional concentration data of DO, NO3, and N2O. That difference underscores the need to reconsider our understanding of the N cycle in the oxic-anoxic interface.  相似文献   
7.
The quantitative evaluation of the effects of bedrock groundwater discharge on spatial variability of stream dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) concentrations has still been insufficient. We examined the relationships between stream DOC, DIN and DIP concentrations and bedrock groundwater contribution to stream water in forest headwater catchments in warm-humid climate zones. We sampled stream water and bedrock springs at multiple points in September and December 2013 in a 5 km2 forest headwater catchment in Japan and sampled groundwater in soil layer in small hillslopes. We assumed that stream water consisted of four end members, groundwater in soil layer and three types of bedrock groundwater, and calculated the contributions of each end member to stream water from mineral-derived solute concentrations. DOC, DIN and DIP concentrations in stream water were compared with the calculated bedrock groundwater contribution. The bedrock groundwater contribution had significant negative linear correlation with stream DOC concentration, no significant correlation with stream DIN concentration, and significant positive linear correlation with stream DIP concentration. These results highlighted the importance of bedrock groundwater discharge in establishing stream DOC and DIP concentrations. In addition, stream DOC and DIP concentrations were higher and lower, respectively, than those expected from end member mixing of groundwater in soil layer and bedrock springs. Spatial heterogeneity of DOC and DIP concentrations in groundwater and/or in-stream DOC production and DIP uptake were the probable reasons for these discrepancies. Our results indicate that the relationships between spatial variability of stream DOC, DIN and DIP concentrations and bedrock groundwater contribution are useful for comparing the processes that affect stream DOC, DIN and DIP concentrations among catchments beyond the spatial heterogeneity of hydrological and biogeochemical processes within a catchment.  相似文献   
8.
The Kiryu Experimental Catchment (KEW) is a small (5.99 ha) forest catchment located in Shiga Prefecture, central Japan (34°58′ N, 136°00′ E; www.bluemoon.kais.kyoto-u.ac.jp/kiryu/contents.html ). Around this area, forest devastation occurred from ca. 1250 to ca. 150 years ago because of overuse of forest and timbers. Then, hillside forestation was carried out for more than 100 years to prevent soil erosion and support the timber industry, and consequently, most of this area is now covered with plantation forests mainly by Chamaecyparis obtusa Sieb. et Zucc. (Japanese cypress) planted around 1960's. This plantation forest is not actively managed. The KEW is one of the leading experimental forests with long-term monitoring data in Japan. Research in the KEW began in 1967 to elucidate the hydrological and biogeochemical processes in the forested catchment in relation to climate, geology, soil, and vegetation growth. Since then, the long-term hydrological data of precipitation, runoff and sediment transport are continuously monitoring. In this study, we provide the data and preliminarily discuss the rainfall–runoff patterns and sediment transport through 50 years in the KEW. The annual precipitation and the maximum daily rainfall have been greater than the average over the last decade. In response to the rainfall patterns, the ratio of annual direct runoff to precipitation was also larger in the last decade. The sediment transport in this decade was consequently larger than the preceding decades. Our data presented here suggest that a close relationship exists between the climate condition, rainfall–runoff response, sediment dynamics, as well as a slowly progressing change of forest condition.  相似文献   
9.
To evaluate the effects of hillslope topography on storm runoff in a weathered granite mountain, discharge rate, soil pore water pressures, and water chemistry were observed on two types of hillslope: a valley‐head (a concave hillslope) and a side slope (a planar hillslope). Hydrological responses on the valley‐head and side slope reflected their respective topographic characteristics and varied with the rainfall magnitude. During small rainfall events (<35 mm), runoff from the side slope occurred rapidly relative to the valley‐head. The valley‐head showed little response in storm runoff. As rainfall amounts increased (35–60 mm), the valley‐head yielded a higher flow relative to the side slope. For large rainfall events (>60 mm), runoff from both hillslopes increased with rainfall, although that from the valley‐head was larger than that from the side slope. The differences in the runoff responses were caused by differences in the roles of lower‐slope soils and the convergence of the hillslope. During small rainfall events, the side slope could store little water; in contrast, all rainwater could be stored in the soils at the valley‐head hollow. As the amount of rainfall increased, the subsurface saturated area of the valley‐head extended from the bottom to the upper portion of the slope, with the contributions of transient groundwater via lateral preferential flowpaths due to the high concentration of subsurface water. Conversely, saturated subsurface flow did not contribute to runoff responses, and the subsurface saturated area at the side slope did not extend to the upper slope for the same storm size. During large rainfall events, expansion of the subsurface saturated area was observed in both hillslopes. Thus, differences in the concentration of subsurface water, reflecting hillslope topography, may create differences in the extension of the subsurface saturated area, as well as variability in runoff responses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
Jiang  Xinyu  Mori  Nobuhito  Tatano  Hirokazu  Yang  Lijiao  Shibutani  Yoko 《Natural Hazards》2015,84(1):35-49

This paper estimates property loss and business interruption loss under scenarios of storm surge inundation to explore the economic impact of climate change on Ise Bay, Japan. Scenarios-based analyses are conducted with respect to Typhoon Vera, which caused the most severe storm surge in the recorded history of Japan in 1959. Four different hazard scenarios are chosen from a series of typhoon storm surge inundation simulations: Typhoon Vera’s landfall with respect to the condition of the past seawall; Typhoon Vera’s landfall with respect to the condition of the current seawall; intensifying Typhoon Vera, but retaining its original tracks; and intensifying Typhoon Vera, but choosing the worst tracks from various possible typhoon tracks. Our economic loss estimation takes advantage of fine geographical scale census and economic census data that enable us to understand the spatial distribution of property loss and business interruption loss as well as identify the most potentially affected areas and business sectors on a sub-city scale. By comparing the property loss and business interruption loss caused by different hazard scenarios, the effect of different seawalls is evaluated and the economic impact of future climate change is estimated. The results indicate that although the current seawall can considerably reduce the scale of losses, climate change can cause Ise Bay to experience more serious storm surge inundation. Moreover, the resulting economic losses would increase significantly owing to a combination of climate change and the worst track scenario. It is, therefore, necessary to consider more countermeasures to adapt to climate change in this area.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号