首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
地球物理   18篇
地质学   1篇
天文学   18篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2003年   3篇
排序方式: 共有37条查询结果,搜索用时 62 毫秒
1.
We consider temporal, spectral, and polarization parameters of the hard X-ray and gamma-ray radiation observed during the solar flare of May 20, 2002, in the course of experiments with the SONG and SPR-N instruments onboard the Coronas-F spacecraft. This flare is one of the most intense gamma-ray events among all of the bursts of solar hard electromagnetic radiation detected since the beginning of the Coronas-F operation (since July 31, 2001) and one of the few gamma-ray events observed during solar cycle 23. A simultaneous analysis of the Coronas-F and GOES data on solar thermal X-ray radiation suggests that, apart from heating due to currents of matter in the the flare region, impulsive heating due to the injection of energetic electrons took place during the near-limb flare S21E65 of May 20, 2002. These electrons produced intense hard X-ray and gamma-ray radiation. The spectrum of this radiation extends up to energies ≥7 MeV. Intense gamma-ray lines are virtually unobservable against the background of the nonthermal continuum. The polarization of the hard X-ray (20–100 keV) radiation was estimated to be ≤15–20%. No significant increase in the flux of energetic protons from the flare under consideration was found. At the same time, according to ACE data, the fluxes of energetic electrons in interplanetary space increased shortly (~25 min) after the flare.  相似文献   
2.
Regularities have been searched for in the dynamics of characteristics of flare solar radiation during the development of the active region NOAA 0069 in the interval of August 14–24, 2002. The SONG (Solar Neutrons and Gamma rays) instrument onboard the Russian CORONAS-F Solar Observatory recorded hard X-ray and gamma-ray radiation in nine of the 30 flares of class above C5 in this active region within the indicated time interval. It was obtained that, in accordance with the development of the active region, the X- and gamma-ray flux tended to increase at the flare maxima while the hard X-ray spectral index tended to decrease; flares with a harder radiation spectrum occurred in the sunspot umbra, i.e., in the region with the strongest magnetic fields.  相似文献   
3.
Based on X-ray, gamma-ray, and charged-particle measurements with several instruments onboard the Coronas-F satellite and on ACE and GOES experimental data presented on the Internet, we investigate the parameters of the solar flare of November 4, 2001, and the energetic-particle fluxes produced by it in circumterrestrial space. The increase in relativistic-electron fluxes for about 1.5 days points to a moving source (shock front). The structure of the energetic-particles fluxes in the second half of November 5, 2001, can be explained by the passage of the coronal mass ejection that was ejected on November 1, 2001, and that interacted with the shock wave from the flare of November 4, 2001.  相似文献   
4.
The paper investigates the possibilities of the prediction of the time series of the flux of relativistic electrons in the Earth’s outer radiation belt by parameters of the solar wind and the interplanetary magnetic field measured at the libration point and by the values of the geomagnetic indices. Different adaptive methods are used (namely, artificial neural networks, group method of data handling, and projection to latent structures). The comparison of quality indicators of predictions with a horizon of 1–12 h between each other and with the trivial model prediction has shown that the best result is obtained for the average value of the responses of three neural networks that have been trained with different sets of initial weights. The prediction result of the group method of data handling is close to the result of neural networks, and the projection to latent structures is much worse. It is shown that an increase in the prediction horizon from 1 to 12 h reduces its quality but not dramatically, which makes it possible to use these methods for medium-term prediction.  相似文献   
5.
Water Resources - The present-day conditions of the formation and distribution of the water resources and chemistry under global warming during the recent decades have been considered. The...  相似文献   
6.
Water Resources - The space–time variations in the Oka basin water chemistry have been considered. The specific features in the river water and groundwater pollution along the Oka channel and...  相似文献   
7.
The results of an experimental study of the variations in the intensity of the fluxes of the Earth radiation belt (ERB) particles in 0.3–6 and 1–50 MeV energy intervals for electrons and protons, respectively, are reported. ERBs were studied during strong magnetic storms from August 2001 through November 2003. The results of the CORONAS-F mission obtained during the magnetic storms of November 6 (D st = ?257 nT) and November 24, 2001 (D st = ?221 nT), October 29–30 (D st = ?400 nT) and November 20, 2003 (D st = ?465 nT) are analyzed. The electron flux is found to decrease abruptly in the outer radiation belt during the main phase of the magnetic storms under consideration. During the recovery phase, the outer radiation belt is found to recover much closer to Earth, near the boundary of the penetration of solar electrons during the main phase of the magnetic storm. We associate the decrease in the electron flux with the abrupt decrease of the size of the magnetosphere during the main phase of the storm. Note that, in all cases studied, the Earth radiation belts exhibited rather long (several days) variations. In those cases where solar cosmic-ray fluxes were observed during the storm, protons with energies 1–5 MeV could be trapped to form an additional maximum of protons with such energies at L >2.  相似文献   
8.
The study of variations in the electron flux in the outer Earth radiation belt (ERB) and their correlations with solar processes is one of the important problems in the experiment with the Electron-M-Peska instrument onboard the CORONAS-Photon solar observatory. Data on relativistic and subrelativistic electron fluxes obtained by the Electron-M-Peska in 2009 have been used to study the outer ERB dynamics at the solar minimum. Increases in outer ERB relativistic electron fluxes, observed at an height of 550 km after weak magnetic disturbances induced by high-velocity solar wind arriving to the Earth, have been analyzed. The geomagnetic disturbances induced by the high-velocity solar wind and that resulted in electron flux variations were insignificant: there were no considerable storms and substorms during that period; however, several polar ground-based stations observed an increase in wave activity. An assumption has been made that the wave activity caused the variations in relativistic electron fluxes.  相似文献   
9.
Results of photospheric magnetic field extrapolation in a potential approximation and of the technique for separating the open part of magnetic flux have revealed that changes in the relationship between the open part of the south polarity magnetic flux obtained in the chromosphere and corona from July to November 2006 correlate with variations in the Akasofu parameter calculated from data on the solar wind parameters and interplanetary magnetic field at Lagrange point L1, and with the K p index.  相似文献   
10.
The SONG instrument onboard the CORONAS-F satellite recorded gamma-ray emission with energy above 500 keV in 28 solar flares over three years of its in-orbit operation. According to the GOES classification, the X-ray importance of these flares lay within the range M1.4-X28. The gamma-ray energy recorded by SONG exceeded 4 MeV in 16 flares. Gamma-ray emission with energy up to 100 MeV was recorded in three events, more specifically, on August 25, 2001, October 28, 2003, and November 4, 2003. Increases in the count rate in the SONG channels that recorded neutrons with energies above 20 MeV were found during these three events. The energies of the recorded neutrons were estimated for the neutron increases. The time dependence of the neutron increases was compared with data from high-altitude ground-based neutron monitors that could, in principle, record the arrival of high-energy neutrons from the Sun. It should be noted that we detected series of flares with gamma-ray emission generated by the same active region (AR). The series in the last decade of August 2002 (AR NOAA 0069), the end of May 2003 (AR NOAA 0365), and the famous period of extreme solar activity in October–November 2003 associated with AR NOAA 0486 and AR NOAA 0501 are quite revealing. The catalog can be of use for future statistical and correlation analyses of solar flares.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号