首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
地球物理   1篇
地质学   1篇
天文学   1篇
  2011年   1篇
  2007年   1篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Paleoclimatic settings have been reconstructed for the Campanian using original oxygen-isotopic analyses of well-preserved molluskan and foraminifera shells from Russian Far East, Hokkaido, USA, Belgium and some DSDP holes (95, 98, 102, 390A, and 392A) in North Atlantic. Early Early Campanian climatic optimum has been recognized from data on high bottom shelf water paleotemperatures in middle latitudes of both the western circum-Pacific (to 24.2°C) and the eastern circum-Pacific (to 26.4°C) areas and high bottom shallow water paleotemperatures in high latitudes of the Koryak Upland (22.4–25.5°C), which agrees with the data on the Campanian Barykovskaya flora in high latitudes (Golovneva and Herman, 1998) and Jonker flora and its equivalents in middle latitudes. Judging from the data on comparatively high bottom shallow water paleotemperature values in high latitudes, South Alaska (19.4°C) and the Koryak Upland (22.4–25.5°C), we also expect Latest Campanian temperature maximum, which has not been confirmed, however, for low and middle latitudes by neither of isotopic nor paleobotanic data now. Main climatic tendency during the Campanian (with the exception of Latest Campanian) has been learned from isotopic composition of Campanian aragonitic ammonoid shells from the Hokkaido-South Sakhalin (Krilyon) marine basin. In contrary to Huber’s et al. (2002) assumption, we expect warm greenhouse conditions during the most part of the Campanian.  相似文献   
2.
Abstract— A dark inclusion in the Vigarano CV3 carbonaceous chondrite consists almost exclusively of small (<5 μm in diameter) grains of Fe-rich olivine and is devoid of chondrules, Ca-Al-rich inclusions (CAIs) and their pseudomorphs. In backscattered electron images, this dark inclusion shows an unusual texture comprising a network of arcuate bands. Two or more bands occur roughly parallel, forming a set of succesive parallel bands, some crosscutting one another. The bands contain slightly higher amounts of relatively small (<1 μm) olivine grains and so are more densely packed than other areas. The olivine grains in the bands are slightly more Fe-rich than those in other areas. The bands commonly show gradation on the concave side due to a decrease in the abundance of the small Fe-rich olivine grains. Texturally, the arcuate bands closely resemble “dish structures” that are commonly observed in siltstones and sandstones on Earth. Dish structures are characterized by thin, dark-colored, subhorizontal to concave-upward laminations that are rich in relatively fine-grained material. On Earth, dish structures form during compaction and dewatering of unconsolidated fine-grained sediments; they are one of the characteristic sedimentary structures formed through fluidization of fine grains. The dark inclusion in Vigarano, therefore, provides the first evidence that sedimentary processes due to water migration may have taken place within planetesimals and further suggests that fluidization may have played a significant role in the formation of the carbonaceous chondrites.  相似文献   
3.
The results of a calcareous nannofossil biostratigraphic investigation of the North Fork Cottonwood Creek section of the Budden Canyon Formation (BCF; Hauterivian–Turonian) in northern California are summarized using the Boreal – cosmopolitan Boreal Nannofossil Biostratigraphy (BC) – Upper Cretaceous Nannofossil Biostratigraphy (UC) nannofossil zonal schemes of Bown et al. and Burnett et al. Sixteen intervals, ranging from the BC15 to UC8 zones, were established in the section. Combined biostratigraphic and magnetostratigraphic studies suggest a Hauterivian to mid‐Turonian age for the studied sequence. The Hauterivian–Barremian, Barremian–Aptian, Aptian–Albian, Albian–Cenomanian, and Cenomanian–Turonian stage boundaries were delineated near the top of the Ogo Member, below the Huling Sandstone Member, within the upper Chickabally Member, in the upper portion of the Bald Hills Member and within the Gas Point Member, respectively. Unconformities probably exist at the base of the Huling Sandstone Member and the upper part of the upper Chickabally Member. The nannofossil assemblage in the North Fork Cottonwood Creek suggests that the study area was under the influence of cold‐water conditions during the Barremian to Lower Aptian interval, shifting to tropical/warm‐water conditions during the Albian to Turonian interval as a result of the mid‐Cretaceous global warming. Although oceanic anoxic events have not yet been reported in the BCF, preliminary total organic carbon, along with nannofossil data, suggest the presence of the global Cenomanian–Turonian boundary oceanic anoxic event 2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号