首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
测绘学   2篇
地球物理   1篇
地质学   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 191 毫秒
1
1.
This study is done to measure the absorption and distribution of cadmium in different parts of kidney beans, radishes and pumpkins. Three parts of a field was chosen. In one part 65 ppm of cadmium nitrate was added to water and in the other part 130 ppm, the last part was irrigated with normal water. Samples were digested by EPA 3050 method. Cadmium concentration was measured by Unicam 919 absorption unit. Beans accumulate cadmium mostly in root (70 ppm) and a little amount is mobilized through upper parts (12–16ppm), but kidneys did not accumulate a significant amount. In radishes the roots did not accumulate a significant amount of cadmium but stems had 4 ppm and leaves had 25 ppm. Cadmium concentration in soil does not affect its concentration in different parts of pumpkins and beside the stems and leaves (4 ppm) the other parts' concentrations were insignificant. In regard to the results of this study the cadmium concentrations in edible parts of the samples (kidney beans, radish roots and pumpkin fruit) were less than the U.S. EPA standards for agriculture and human beings.  相似文献   
2.
3.
Urban development is a continuous and dynamic spatio-temporal phenomenon associated with economic developments and growing populations. To understand urban expansion, it is important to establish models that can simulate urbanization process and its deriving factors behaviours, monitor deriving forces interactions and predict spatio-temporally probable future urban growth patterns explicitly. In this research, therefore, we presented a hybrid model that integrates the chi-squared automatic integration detection decision tree (CHAID-DT), Markov chain (MC) and cellular automata (CA) models to analyse, simulate and predict future urban expansions in Tripoli, Libya in 2020 and 2025. First, CHAID-DT model was applied to investigate the contributions of urban factors to the expansion process, to explore their interactions and to provide future urban probability map; second, MC model was employed to estimate the future demand of urban land; third, CA model was used to allocate estimated urban land quantity on the probability map to present future projected land use map. Three satellite images of the study area were obtained from the periods of 1984, 2002 and 2010 to extract land use maps and urban expansion data. We validated the model with two methods, namely, receiver operating characteristic and the kappa statistic index of agreement. Results confirmed that the proposed hybrid model could be employed in urban expansion modelling. The applied hybrid model overcame the individual shortcomings of each model and explicitly described urban expansion dynamics, as well as the spatio-temporal patterns involved.  相似文献   
4.
An effective and efficient planning of an urban growth and land use changes and its impact on the environment requires information about growth trends and patterns amongst other important information. Over the years, many urban growth models have been developed and used in the developed countries for forecasting growth patterns. In the developing countries however, there exist a very few studies showing the application of these models and their performances. In this study two models such as cellular automata (CA) and the SLEUTH models are applied in a geographical information system (GIS) to simulate and predict the urban growth and land use change for the City of Sana’a (Yemen) for the period 2004–2020. GIS based maps were generated for the urban growth pattern of the city which was further analyzed using geo-statistical techniques. During the models calibration process, a total of 35 years of time series dataset such as historical topographical maps, aerial photographs and satellite imageries was used to identify the parameters that influenced the urban growth. The validation result showed an overall accuracy of 99.6 %; with the producer’s accuracy of 83.3 % and the user’s accuracy 83.6 %. The SLEUTH model used the best fit growth rule parameters during the calibration to forecasting future urban growth pattern and generated various probability maps in which the individual grid cells are urbanized assuming unique “urban growth signatures”. The models generated future urban growth pattern and land use changes from the period 2004–2020. Both models proved effective in forecasting growth pattern that will be useful in planning and decision making. In comparison, the CA model growth pattern showed high density development, in which growth edges were filled and clusters were merged together to form a compact built-up area wherein less agricultural lands were included. On the contrary, the SLEUTH model growth pattern showed more urban sprawl and low-density development that included substantial areas of agricultural lands.  相似文献   
5.
The rapid development of cities in developing countries results in deteriorating of agricultural lands. The majority of these agricultural lands are converted to urban areas, which affects the ecosystems. In this research, an integrated model of Markov chain and cellular automata models was applied to simulate urban land use changes and to predict their spatial patterns in Tripoli metropolitan area, Libya. It is worth mentioning that there is not much research has been done about land use/cover change in Libyan cities. In this study, the performance of integrated CA–Markov model was assessed. Firstly, the Markov chain model was used to simulate and predict the land use change quantitatively; then, the CA model was applied to simulate the dynamic spatial patterns of changes explicitly. The urban land use change from 1984 to 2010 was modelled using the CA–Markov model for calibration to compute optimal transition rules and to predict future land use change. In validation process, the model was validated using Kappa index statistics which resulted in overall accuracy more than 85 %. Finally, based on transition rules and transition area matrix produced from calibration process, the future land use changes of 2020 and 2025 were predicted and mapped. The findings of this research showed reasonably good performance of employed model. The model results demonstrate that the study area is growing very rapidly especially in the recent decade. Furthermore, this rapid urban expansion results in remarkable continuous decrease of agriculture lands.  相似文献   
6.
The main objective of this paper is to analyze urban sprawl in the metropolitan city of Tripoli, Libya. Logistic regression model is used in modeling urban expansion patterns, and in investigating the relationship between urban sprawl and various driving forces. The 11 factors that influence urban sprawl occurrence used in this research are the distances to main active economic centers, to a central business district, to the nearest urbanized area, to educational area, to roads, and to urbanized areas; easting and northing coordinates; slope; restricted area; and population density. These factors were extracted from various existing maps and remotely sensed data. Subsequently, logistic regression coefficient of each factor is computed in the calibration phase using data from 1984 to 2002. Additionally, data from 2002 to 2010 were used in the validation. The validation of the logistic regression model was conducted using the relative operating characteristic (ROC) method. The validation result indicated 0.86 accuracy rate. Finally, the urban sprawl probability map was generated to estimate six scenarios of urban patterns for 2020 and 2025. The results indicated that the logistic regression model is effective in explaining urban expansion driving factors, their behaviors, and urban pattern formation. The logistic regression model has limitations in temporal dynamic analysis used in urban analysis studies. Thus, an integration of the logistic regression model with estimation and allocation techniques can be used to estimate and to locate urban land demands for a deeper understanding of future urban patterns.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号