首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  国内免费   5篇
测绘学   3篇
大气科学   12篇
地球物理   3篇
地质学   10篇
天文学   1篇
自然地理   2篇
  2022年   2篇
  2020年   2篇
  2019年   3篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2001年   1篇
排序方式: 共有31条查询结果,搜索用时 46 毫秒
1.
The vegetation dynamics and land use/land cover types of Birantiya Kalan watershed located in the arid tracts of western Rajasthan have been characterized and evaluated using Remote Sensing and Geographical Information System (GIS). The watershed under study falls in the transitional plain of Luni Basin and is characterized by Aravali ranges in the eastern half and vast alluvial plains in the west. The land use/land cover types, as identified are cropland, fallow, forest, land with scrub, land without scrub, sandy area and the water body. Land with scrub occupied maximum area (39% area of the watershed) in 1996 in place of crop land which was dominant (43% of total area) in the year 1988. During eight years period, seasonal fallow land increased significantly and the areal extent of water body decreased to almost half. Vegetation vigour types have been classified into very poor, poor. moderate, good and very good categories. Moderate vigour type reduced from 62 to 27% and poor type increased from 34 to 68% during the period 1988 to 1996. Other vegetation vigour types have not shown any significant changes. To quantify the changes over the years in both vegetation and land use/land cover, weightages have been given to each type and composite values of both vegetation vigour and land use types for 1996 and 1988 have been calculated. It has been observed that the ratio for vegetation vigour has been found to be 0.85 showing that the overall vegetation have not improved after the treatment. The ratio for land use is found to be 1.01, which indicates negligible change in land use.  相似文献   
2.
ABSTRACT

Widespread forest fire events occurred in the foothills of North Western Himalaya during 24 April to 2 May 2016 (Event-1) and 20–30 May 2018 (Event-2). Their impacts were investigated on the distribution of pollutant gases ozone (O3), carbon monoxide (CO), and oxides of nitrogen (NOx) over Uttarakhand using simulations of Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and in-situ observations of these gases over Dehradun, the capital of Uttarakhand. During Event-1, the observed CO mixing ratio over Dehradun increased from 25 April 2016 onwards, attained maximum (705.8 ± 258 ppbv) on 2 May 2016 and subsequently decreased. The rate of increase of daily baseline CO was 29 ppbv/day during HFAP (High Fire Activity Period). During Event-2, daily average concentrations of CO, O3, and NOx showed systematic increase over Dehradun during HFAP period. The rate of increase of CO was 9 ppbv/day, while it was very small for NOx and O3. To quantitatively estimate the influence of forest fire emissions, two WRF-Chem simulations were made: one with biomass burning (BB) emissions and other without BB emissions. These simulations showed 52% (34%) enhancement in CO, 52% (32%) enhancement in NOx, and 11% (9%) enhancement in O3 during HFAP for Event-1 (Event-2). A clear positive correlation (r = 0.89 for Event-1, r = 0.69 for Event-2) was found between ?O3 (O3with BB minus O3without BB) and ?CO (COwith BB minus COwithout BB), indicating rapid production of ozone in the fire plumes. For both the events, the vertical distribution of ?O3, ?CO, and ?NOx showed that forest fire emissions influenced the air quality upto 6.5 km altitude. Peaks in ?O3, ?CO, and ?NOx during different days suggested the role of varying dispersion and horizontal mixing of fire plumes.  相似文献   
3.
Abstract

A finite element model to simulate runoff and soil erosion from agricultural lands has been developed. The sequential solutions of the governing differential equations were found: Richards' equation with a sink term for infiltration and soil water dynamics under cropped conditions; St Venant equation with kinematic wave approximation for overland and channel flow; and sediment continuity equation, for soil erosion. The model developed earlier has been improved to simulate erosion/deposition in impoundments and predicted and observed soil loss values were in reasonably good agreement when the model was tested for a conservation bench terrace (CBT) system. The finite element model was extensively applied to study the hydrological behaviour of a CBT system vis-à-vis the conventional system of sloping borders. The model estimates runoff and soil loss reasonably well, under varying conditions of rainfall and at different crop growth stages. The probable reasons for discrepancies between observation and simulation are reported and discussed. Sensitivity analysis was carried out to study the effect of various hydrological, soil and topographical parameters, such as ratio of contributing to receiving areas, weir length, depth of impoundment, slope of contributing area, etc. on the flow behaviour in a CBT system.  相似文献   
4.
Wang  Sai  Nath  Debashis  Chen  Wen  Ma  Tianjiao 《Climate Dynamics》2020,54(11):4499-4513
Climate Dynamics - The second empirical orthogonal function mode (EOF2) of winter surface air temperature (SAT) over 0°–180° E, 40°–90° N during 1979–2005 is...  相似文献   
5.
The presence of light-absorbing aerosols(LAA) in snow profoundly influence the surface energy balance and water budget.However,most snow-process schemes in land-surface and climate models currently do not take this into consideration.To better represent the snow process and to evaluate the impacts of LAA on snow,this study presents an improved snow albedo parameterization in the Snow–Atmosphere–Soil Transfer(SAST) model,which includes the impacts of LAA on snow.Specifically,the Snow,Ice and Aerosol Radiation(SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme.The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot(SASP),Colorado,USA.Results show that the snow albedo and snow depth are better reproduced than those in the original SAST,particularly during the period of snow ablation.Furthermore,the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack,with or without LAA.The LAA particles directly absorb extra solar radiation,which accelerates the growth rate of the snow grain size.Meanwhile,these larger snow particles favor more radiative absorption.The average total radiative forcing of the LAA at the SASP is 47.5Wm~(-2).This extra radiative absorption enhances the snowmelt rate.As a result,the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier,respectively,which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.  相似文献   
6.
7.
The present study demonstrates the importance of hydrogeochemical characteristics (groundwater flow and recharge) of an aquifer in the release of As to groundwater. The study area (∼20 km2) is located in Chakdaha block, Nadia district, West Bengal, which hosts groundwaters of variable As content. The spatial distribution pattern of As is patchy with areas containing groundwater that is high in As (>200 μg L−1) found in close vicinity to low As (<50 μg L−1) groundwaters (within 100 m). The concentration of groundwater As is found to decrease with depth. In addition, the data shows that there is no conspicuous relationship between high groundwater As concentration and high groundwater abstraction, although the central cone of depression has enlarged over 2 a and is extending towards the SE of the study area. The river Hooghly, which forms the NW boundary of the study site, shows dual behaviour (effluent and influent during pre- and post-monsoon periods, respectively), complicating the site hydrogeology. The observed groundwater flow lines tend to be deflected away from the high As portion of the aquifer, indicating that groundwater movement is very sluggish in the As-rich area. This leads to a high residence time for this groundwater package, prolonging sediment–water interaction, and hence facilitating groundwater As release.  相似文献   
8.
Planetary wave reflection from the stratosphere played a significant role in changing the tropospheric circulation pattern over Eurasia in mid-January 2008. We studied the 2008 event and compared with composite analysis(winters of 2002/2003,2004/2005, 2006/2007, 2007/2008, 2010/2011 and 2011/2012), when the downward coupling was stronger, by employing time-lagged singular value decomposition analysis on the geopotential height field. In the Northern Hemisphere, the geopotential fields were decomposed into zonal mean and wave components to compare the relative covariance patterns. It was found that the wavenumber 1(WN1) component was dominant compared with the wavenumber 2(WN2) component and zonal mean process. For the WN1 field, the covariance was much higher(lower) for the negative(positive) lag, with a prominent peak around +15 days when the leading stratosphere coupled strongly with the troposphere. It contributed to the downward coupling due to reflection, when the stratosphere exhibited a partially reflective background state. We also analyzed the evolution of the WN1 anomaly and heat flux anomaly, both in the troposphere and stratosphere, during January–March 2008. The amplitude of the tropospheric WN1 pattern reached a maximum and was consistent with a downward wave coupling event influenced by the stratospheric WN1 anomaly at 10 h Pa. This was consistent with the reflection of the WN1 component over Eurasia, which triggered an anomalous blocking high in the Urals–Siberia region. We further clarified the impact of reflection on the tropospheric WN1 field and hence the tropospheric circulation pattern by changing the propagation direction during and after the event.  相似文献   
9.
Indian Centre for Space Physics has taken a novel strategy to study low energy cosmic rays and astrophysical X-ray sources which involve very light weight payloads up to about five kilograms on board a single or multiple balloons which are used for meteorological purposes. The mission duration could be anywhere from 3-12 hours. Our strategy provides extreme flexibility in mission preparation and its operation using a very economical budget. There are several limitations but our innovative approach has been able to extract significant amount of scientific data out of these missions. So far, over one hundred missions have been completed by us to near space and a wealth of data has been collected. The payloads are recovered and are used again. Scientific data is stored on board computer and the atmospheric data or payload location is sent to ground in real time. Since each mission is different, we present here the general strategy for a typical payload and provide some results we obtained in some of these missions.  相似文献   
10.
In this paper, six image-based Relative Radiometric Normalization (RRN) techniques were applied to normalize the bi-temporal Landsat 5 TM data-set. RRN techniques do not require any atmospheric and ground information at the time of image acquisition. The target image for the year 2009 was normalized in such a way that it resembled the atmospheric and sensor conditions similar to those under which the reference image of the same season for the year 1990 was acquired. Among the selected methods applied, it was found that the Iteratively Reweighted Multivariate Alteration Detection (IR-MAD) method performed better, based on the error statistic. The IR-MAD technique was found to be advantageous as it identified a large set of true time-invariant pixels automatically from the change background using iterative canonical component analysis. The technique also stretches the values of Normalized Difference Vegetation Index and Normalized Difference Water Index and may help to distinguish different vegetation and water bodies better.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号