首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75303篇
  免费   1004篇
  国内免费   1257篇
测绘学   2502篇
大气科学   5708篇
地球物理   14450篇
地质学   31202篇
海洋学   5459篇
天文学   11838篇
综合类   2250篇
自然地理   4155篇
  2021年   373篇
  2020年   444篇
  2019年   447篇
  2018年   7249篇
  2017年   6522篇
  2016年   4478篇
  2015年   931篇
  2014年   1132篇
  2013年   2036篇
  2012年   2815篇
  2011年   5867篇
  2010年   5097篇
  2009年   5671篇
  2008年   4652篇
  2007年   5570篇
  2006年   1565篇
  2005年   1747篇
  2004年   1768篇
  2003年   1783篇
  2002年   1410篇
  2001年   967篇
  2000年   985篇
  1999年   720篇
  1998年   684篇
  1997年   714篇
  1996年   576篇
  1995年   591篇
  1994年   581篇
  1993年   463篇
  1992年   468篇
  1991年   409篇
  1990年   444篇
  1989年   398篇
  1988年   409篇
  1987年   445篇
  1986年   393篇
  1985年   522篇
  1984年   527篇
  1983年   556篇
  1982年   513篇
  1981年   445篇
  1980年   476篇
  1979年   382篇
  1978年   363篇
  1977年   352篇
  1976年   328篇
  1975年   328篇
  1974年   322篇
  1973年   317篇
  1971年   198篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
The 33 086 ha mixed land use Fall Creek watershed in upstate New York is part of the Great Lakes drainage system. Results from more than 3500 water samples are available in a data set that compiles flow data and measurements of various water quality analytes collected between 1972 and 1995 in all seasons and under all flow regimes in Fall Creek and its tributaries. Data is freely accessible at https://ecommons.cornell.edu/handle/1813/8148 and includes measurements of suspended solids, pH, alkalinity, calcium, magnesium, potassium, sodium, chloride, nitrate nitrogen (NO3-N), sulphate sulphur (SO4-S), phosphorus (P) fractions molybdate reactive P (MRP) and total dissolved P (TDP), percent P in sediment, and ammonium nitrogen (NH4-N). Methods, sub-watershed areas, and coordinates for sampling sites are also included. The work represented in this data set has made important scientific contributions to understanding of hydrological and biogeochemical processes that influence loading in mixed use watersheds and that have an impact on algal productivity in receiving water bodies. In addition, the work has been foundational for important regulatory and management decisions in the region.  相似文献   
3.
We present the results of our modeling of the O I line formation under non-LTE conditions in the atmospheres of FG stars. The statistical equilibrium of O I has been calculated using Barklem’s quantum-mechanical rates of inelastic collisions with hydrogen atoms. We have determined the non-LTE oxygen abundance from atomic O I lines for the Sun and 46 FG stars in a wide metallicity range, ?2.6 < [Fe/H] < 0.2. The application of accurate atomic data has led to an increase in the departures from LTE and a decrease in the oxygen abundance compared to the use of Drawin’s theoretical approximation. The change in the non-LTE abundance from the infrared O I 7771-5 Å triplet lines is 0.11 dex for solar atmospheric parameters and diminishes in absolute value with decreasing metallicity. We have revised the [O/Fe]–[Fe/H] relationship derived by us previously. The change in [O/Fe] is small in the [Fe/H] range from ?1.5 to 0.2. For stars with [Fe/H] < ?1 the [O/Fe] ratio has increased so that [O/Fe] = 0.60 at [Fe/H] = ?0.8 and rises to [O/Fe] = 0.75 at [Fe/H] = ?2.6.  相似文献   
4.
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-\(\beta\) plasma using kinetic theory. The effect of density variation of \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions is observed on frequency and damping rate of the wave. The variation of frequency (\(\omega\)) and normalised damping rate (\(\gamma / \varOmega_{H^{ +}} \)) of the wave are studied with respect to \(k_{ \bot} \rho_{j}\), where \(k_{ \bot} \) is the perpendicular wave number, \(\rho_{j}\) is the ion gyroradius and \(j \) denotes \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions. The variation with \(k_{ \bot} \rho_{j}\) is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of \(\text{H}^{+}\) and \(\text{He}^{+}\) ions but remains insensitive to the change in density of \(\text{O}^{+}\) ions. For oxygen ion gyration, the frequency of wave varies over a short range only for \(\text{O}^{+}\) ion density variation. The wave shows damping at lower altitude due to variation in density of lighter \(\text{H}^{+}\) and \(\text{He}^{+}\) ions whereas at higher altitude only heavy \(\text{O}^{+}\) ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.  相似文献   
5.
In Eastern South America, high altitude grasslands represent a mountain system that has a high number of endemic species. However, studies on the ecology of plant communities in these environments remain scarce. We aimed to evaluate the patterns of biodiversity and structure of plant communities from rocky outcrops in high altitude grasslands of three areas at the Caparaó National Park, southeastern Brazil, by sampling 300 randomly distributed plots. Then, we compared the floristic composition, relative abundance, and biological and vegetation spectra among areas. We classified species as endemic and non-endemic and verified the occurrence of endangered species. Species richness was evaluated by rarefaction analysis on the sampling units. The importance value and species abundance distribution (SAD) models were assessed. We also performed an indicator species analysis. We sampled 58 species belonging to 49 genera and 32 families. The number of species decreased with increasing altitude, with significant differences being observed among areas regarding richness, abundance, and cover. Of the total number of species, 10 are endemic to the Caparaó National Park and 17 are listed on the Brazilian Red List of endangered species. The dominant families on all peaks were Asteraceae and Poaceae. The SAD models showed lognormal and geometric distributions, corroborating the fact that 10 species that were common to all three areas were also the most dominant ones in the communities and showed the highest importance values, which ranged between 35% and 60%. Indicator species analysis revealed that 28 species (48.27%) were indicators. Of these, 42.85% had maximum specificity, meaning that they occurred only in one area. Thus, the number of species per life form ratio was similar among areas, yet vegetation spectra differed, especially for hemicryptophytes. The altimetric difference among the areas showed to be a very important driver in the community assembly, influencing the evaluated variables, however, other drivers as soil depth, slope and water could also influence the community structure on a smaller and local spatial scale.  相似文献   
6.
In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth’s ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole–type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 ? 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.  相似文献   
7.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
8.
Local glaciers and ice caps (GICs) comprise only ~5.4% of the total ice volume, but account for ~14–20% of the current ice loss in Greenland. The glacial history of GICs is not well constrained, however, and little is known about how they reacted to Holocene climate changes. Specifically, in North Greenland, there is limited knowledge about past GIC fluctuations and whether they survived the Holocene Thermal Maximum (HTM, ~8 to 5 ka). In this study, we use proglacial lake records to constrain the ice‐marginal fluctuations of three local ice caps in North Greenland including Flade Isblink, the largest ice cap in Greenland. Additionally, we have radiocarbon dated reworked marine molluscs in Little Ice Age (LIA) moraines adjacent to the Flade Isblink, which reveal when the ice cap was smaller than present. We found that outlet glaciers from Flade Isblink retreated inland of their present extent from ~9.4 to 0.2 cal. ka BP. The proglacial lake records, however, demonstrate that the lakes continued to receive glacial meltwater throughout the entire Holocene. This implies that GICs in Finderup Land survived the HTM. Our results are consistent with other observations from North Greenland but differ from locations in southern Greenland where all records show that the local ice caps at low and intermediate elevations disappeared completely during the HTM. We explain the north–south gradient in glacier response as a result of sensitivity to increased temperature and precipitation. While the increased temperatures during the HTM led to a complete melting of GICs in southern Greenland, GICs remained in North Greenland probably because the melting was counterbalanced by increased precipitation due to a reduction in Arctic sea‐ice extent and/or increased poleward moisture transport.  相似文献   
9.
In this paper, we analyze higher-dimensional spherical perfect fluid collapse in \(f(R,T)\) theory for minimally coupled models. We use Darmois junction conditions by taking Lemaître-Tolman-Bondi geometry as an interior region and Schwarzschild metric as an exterior spacetime. The solution of field equations is obtained for constant scalar curvature. We determine mass in two regions of the collapsing object and discuss the formation of apparent horizons. We conclude that modified curvature term tends to slow down the collapse rate.  相似文献   
10.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号