首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   1篇
地球物理   5篇
地质学   31篇
海洋学   11篇
自然地理   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1982年   4篇
  1980年   3篇
排序方式: 共有50条查询结果,搜索用时 171 毫秒
1.
In this study, we examined the distribution of polycyclic aromatic hydrocarbons (PAHs) in a contaminated coastal area and the characteristics of the natural organic matter in tandem. We present a detailed study of PAH concentration, distribution, and organic matter characteristics of three core samples from Pensacola Bay, Florida. Solid-state 13C Nuclear Magnetic Resonance (NMR), pyrolysis gas chromatography coupled with mass spectrometry (GC-MS), and tetramethyl ammonium hydroxide (TMAH) thermochemolysis GC-MS were applied to obtain structural details about the sedimentary organic matter. Elemental compositions (carbon and nitrogen) and estimates of black carbon contents are also reported. These coastal sediments were found to contain more PAHs in the upper 15 cm layers than in the bottom 15-25 cm samples. The samples that contained the most PAHs also contained the least amount of aromatic carbon and contained a significant amount of paraffinic carbon. Lignin-derived pyrolysis and TMAH thermochemolysis products were abundant and generally higher in all of the samples in comparison to those reported for modern coastal sediments, indicating a large flux of terrestrial carbon. The black carbon contents were found to range from 4.3% to 6.8%, which are significantly lower than other reports of black carbon in sediments, which represent as much as 65% of the total organic carbon content. The low black carbon content suggests that this type of refractory carbon may not be as responsible for regulating PAH distribution as indicated by other researchers.  相似文献   
2.
3.
Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples.Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization.  相似文献   
4.
The impact of suspended mussel culture (Mytilus edulis, M. trossulus) on the benthos of a small Nova Scotia cove (7 m depth) was assessed using meehods involving both benthic metabolism and community structure. Due to deposition of mussel feces and pseudofeces, sedimentation rate was higher under the mussel culture lines than at an adjacent reference site of similar sediment texture. Porewater profiles of sediment sulfate and sulfide indicated greater anaerobic metabolism at the mussel site than at the reference site, but sulfide was absent from the upper centimeters of sediments under the mussels. Seasonal measures of sediment oxygen demand showed little change between sites, but maximum rates of ammonium release at the mussel site were twice the highest rates measured at the reference site. Abundance of benthic macrofauna was higher at the reference site, but biomass was generally lower. Biomass at the mussel site was dominated by molluscs (Ilyanassa spp. andNucula tenuisulcata), that were attracted to mussels fallen from the culture and/or enriched organic matter due to biodeposition. Species diversity was lower at the reference site due to the dominance of the polychaeteNephtys neotena. Abundance-biomass comparisons (ABC method) of faunal analysis did not indicate any impact of biodeposition at this site: however, disturbance did not result in a typical assemblage of small opportunistic species anticipated with this method. Cluster analysis of macrofauna usually provided a clear separation between the sites. Since the contruction of a causeway (1968), foraminifera species composition showed a temporal response to temperature changes in the cove by shifting toward calcareous species, but assemblages downcore showed little or no relationship to aquaculture impacts. Although there is a shift toward anaerobic metabolism at the mussel lines, the impact of mussels falling to the sediments was more noticeable in benthic community structure than was any impact due to organic sedimentation or hypoxia. In general the impact of aquaculture on the benthos appeared to be minor. Furtyher assesment of these consequences may mandate both taxonomic and energetic approaches to impact assessment.  相似文献   
5.
Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry.  相似文献   
6.
7.
Dissolved organic matter(DOM) is an important component of ice cores but is currently poorly characterized. DOM from one Holocene sample(HS, aged at 1600–4500 B.P.) and one Last Glacial Maximum sample(LS, aged at 21000–25000 B.P.) from the North Greenland Eemian Ice Drilling(NEEM) ice core were analyzed by ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS). CHO compounds contributed 50% of the compounds identified in negative-ionization mode in these two samples, with significant contributions from organic N, S, and P compounds, likely suggesting that marine DOM was an important source in these samples. Overall, the chemical compositions are similar between these two samples, suggesting their consistent DOM sources. However, subtle differences in the DOM between these two samples are apparent and could indicate differences in source strength or chemistry occurring through both pre-and post-depositional processes. For example, higher relative amounts of condensed carbon compounds in the HS DOM(5%), compared to the LS DOM(2%), suggest potentially important contributions from terrestrial sources. Greater incorporation of P in the observed DOM in the LS DOM(22%), compared to the HS DOM(13%), indicate more active microbiological processes that likely contribute to phosphorus incorporation into the DOM pool. Although these two samples present only a preliminary analysis of DOM in glacial/interglacial periods, the data indicate a need to expand the analysis into a broader range of ice-core samples, geographical locations, and glacial/interglacial periods.  相似文献   
8.
Disturbance events can regularly impact stream ecosystems; however, large-scale catastrophic disturbances are rare. From September 2010 to September 2011 Christchurch City experienced over 8500 earthquakes including a magnitude 7.1. One consequence was catastrophic additions of silt and sand into waterways throughout the city. Of 161 km of permanent waterways, 102 km (63%) were affected by earthquake siltation. Benthic invertebrates and fish communities were compared across 16 streams with differing siltation. Invertebrate taxonomic richness decreased significantly (mean 17 taxa reduced to 10 taxa) and EPT taxa (Ephemeroptera, Plecoptera and Trichoptera) were removed entirely from streams receiving heavy siltation. Fish richness and density decreased significantly, with fish absent from some heavily silted streams. Many of these urban streams are sourced from springs and their stable flows and low gradient limit their ability to flush sediment. We predict that without human intervention there will be a long-term sediment legacy and it may take many years for these streams to recover from this catastrophic disturbance.  相似文献   
9.
Molecular level characterization of complex biopolymers in nature is a key element to understanding the composition of natural organic matter (NOM) and fossil organic matter formation, such as kerogen and coal. Characterization of such geopolymers is difficult due to their heterogeneity and insolubility in common aqueous or organic solvents. Here, a strategy for extracting a representative sample is presented using the combined techniques of nuclear magnetic resonance (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) for chemical analysis and characterization of NOM. A variety of NOM samples (wood, kerogen, bitumen, whole sediments) are shown as examples for implementing the strategy, which include solvent extractions using pyridine. For most samples, the extracts are confirmed to be chemically representative of the insoluble solid, by comparing the liquids NMR spectrum of the extract to that of the whole, unfractionated NOM utilizing high resolution magic angle spinning (HRMAS) NMR. To assist in unambiguous peak assignment, a technique for post acquisition spectral denoising, using wavelet transformation (WT), is also employed on the 1D and 2D NMR spectra. The findings from the NMR data lay a foundation for the subsequent electrospray ionization FTICR-MS analysis of the pyridine extracts, since this instrument has the limitation of only analyzing liquid samples. The FTICR-MS analyses can, therefore, be used to molecularly represent the structural components of the NOM. Various compositional insights have been obtained on these samples, indicating the efficacy of the analytical techniques used.  相似文献   
10.
How dissolved organic matter (DOM) undergoes chemical changes during its transit from river to ocean remains a challenge due to its complex structure. In this study, DOM along a river transect from black waters to marine waters is characterized using an offline combination of reversed-phase high performance liquid chromatography (RP-HPLC) coupled to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS), as well as tandem ESI-FTICR-MS. In addition, a water extract from degraded wood that mainly consists of lignins is used for comparison to the DOM from this transect. The HPLC chromatograms of all DOM samples and the wood extract show two major well-separated components; one is hydrophilic and the other is hydrophobic, based on their elution order from the C18 column. From the FTICR-MS analysis of the HPLC fractions, the hydrophilic components mainly contain low molecular weight compounds (less than 400 Da), while the hydrophobic fractions contain the vast majority of compounds of the bulk C18 extracted DOM. The wood extract and the DOM samples from the transect of black waters to coastal marine waters show strikingly similar HPLC chromatograms, and the FTICR-MS analysis further indicates that a large fraction of molecular formulas from these samples are the same, existing as lignin-like compounds. Tandem mass spectrometry experiments show that several representative molecules from the lignin-like compounds have similar functional group losses and fragmentation patterns, consistent with modified lignin structural entities in the wood extract and these DOM samples. Taken together, these data suggest that lignin-derived compounds may survive the transit from the river to the coastal ocean and can accumulate there because of their refractory nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号