首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   4篇
大气科学   1篇
地球物理   8篇
地质学   23篇
海洋学   2篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2001年   2篇
  2000年   1篇
  1984年   1篇
排序方式: 共有34条查询结果,搜索用时 168 毫秒
1.
The primary occurrence of ruby in the Mogok area, northern Myanmar is exclusively found in marble along with spinel–forsterite-bearing marble and phlogopite–graphite marble. These marble units are enclosed within banded biotite–garnet–sillimanite–oligoclase gneisses. Samples of these marbles collected for C–O stable isotope analysis show two trends of δ13C–δ18O variation resulting most likely from fluid–rock interactions. Ruby-bearing marble and phlogopite–graphite marble follow a trend with coupled C–O depletion, whereas spinel–forsterite-bearing marble follows a δ18O depletion trend with relatively constant δ13C values. Ruby formation might have resulted from CO2-rich fluid–rock interaction, while spinel–forsterite-bearing marble was genetically related to CO2-poor fluid–rock interaction. Both fluids may have arisen from external sources. Based on graphite Raman spectral thermometry, the estimated temperature for phlogopite–graphite marble, and probably ruby-bearing marble, was lower than 607 °C, and for spinel–forsterite-bearing marble, lower than 710 °C. Contrasting C/O diffusion between graphite/ruby/spinel/forsterite and calcite, local variations of isotopic compositions of newly formed minerals as a result of non-pervasive fluid infiltration, and open-system isotopic disturbance during cooling may have affected C-/O-isotopic fractionations between minerals. The estimated high formation temperatures for ruby and spinel/forsterite imply that the parental fluids may have been related to nearby igneous intrusions and/or metamorphic processes. Whether these two types of fluid were genetically related is unclear based on the present data.  相似文献   
2.
The importance of the nitrogen source for phytoplankton growth in a highly eutrophic embayment, Dokai Bay, was investigated. The DIN concentration often exceeded 100 μM of which 40–70% was NH4 +. During two incubation experiments, the natural assemblage of mainly diatoms took up NH4 + instead of NO3 . The growth of two Skeletonema species isolated in Dokai Bay were significantly faster on NH4 + (1.86 and 1.27 div. d−1 respectively) than on NO3 (1.55 and 1.04 div. d−1 respectively). Our results indicated that these diatoms could grow faster by using NH4 + compared to NO3 in this eutrophic bay.  相似文献   
3.
The overall objective of this study is to improve the forecasting accuracy of the precipitation in the Singapore region by means of both rainfall forecasting and nowcasting. Numerical Weather Predication (NWP) and radar‐based rainfall nowcasting are two important sources for quantitative precipitation forecast. In this paper, an attempt to combine rainfall prediction from a high‐resolution mesoscale weather model and a radar‐based rainfall model was performed. Two rainfall forecasting methods were selected and examined: (i) the weather research and forecasting model (WRF); and (ii) a translation model (TM). The WRF model, at a high spatial resolution, was run over the domain of interest using the Global Forecast System data as initializing fields. Some heavy rainfall events were selected from data record and used to test the forecast capability of WRF and TM. Results obtained from TM and WRF were then combined together to form an ensemble rainfall forecasting model, by assigning weights of 0.7 and 0.3 weights to TM and WRF, respectively. This paper presented results from WRF and TM, and the resulting ensemble rainfall forecasting; comparisons with station data were conducted as well. It was shown that results from WRF are very useful as advisory of anticipated heavy rainfall events, whereas those from TM, which used information of rain cells already appearing on the radar screen, were more accurate for rainfall nowcasting as expected. The ensemble rainfall forecasting compares reasonably well with the station observation data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
Kyanite and staurolite occur in the Tananao Metamorphic Complex as submicron inclusions in almandine‐rich garnet from a metamorphosed palaeosol weathering horizon, near Hoping, eastern Taiwan. Quartz, rutile/brookite and zircon are also found as associated submicron inclusions in garnet. Employing the reaction ilmenite+kyanite+quartz=almandine+rutile, and the breakdown of staurolite and quartz as thermobarometers, these submicron‐scale minerals formed at >8.3–8.8 kbar and < 660–690 °C. This P–T estimate is different from that (i.e. 5–7 kbar and 530–550 °C) derived from matrix minerals, which include almandine‐rich garnet, muscovite, chlorite, chloritoid, plagioclase, quartz and ilmenite. These results suggest that submicron inclusions in garnet‐like materials may record portions of the otherwise undocumented prograde path or provide information about previous metamorphic events and thus yield new insights into orogenic belts.  相似文献   
5.
Kokchetavite, a new polymorph of K-feldspar (KAlSi3O8), has been identified as micrometer-size inclusions in clinopyroxene and garnet in a garnet-pyroxene rock from the Kokchetav ultrahigh-pressure terrane, Kazakhstan. Kokchetavite has a hexagonal structure with a =5.27(1) Å, c=7.82(1) Å, V=188.09 Å3, Z=1, and is found to be associated with phengite + /-cristobalite (or quartz) + siliceous glass ± phlogopite/titanite/calcite/zircon, occurring as multi-phase inclusions in clinopyroxene and garnet. It is concluded that kokchetavite could not be an exsolution phase in host minerals. Instead, it might be metastably precipitated from an infiltrated K-rich melt during rock exhumation. Alternatively, although less likely, kokchetavite might be derived from dehydration of K-cymrite, which, in turn, was formed at high pressures. In either case, kokchetavite is a metastable polymorph of K-feldspar.  相似文献   
6.
Metamorphic garnet commonly contains needle‐like rutile inclusions as well as equant rutile inclusions that surround quartz inclusions and range in size from submicrometer to nanometer. Although the origin of these equant rutile inclusions, that is, exsolution or non‐exsolution, has important implications for petrological and tectonic processes, the crystallographic characteristics of these inclusions have rarely been studied because of the small sizes and analytical difficulties involved. Here, we report the crystallographic characteristics pertinent to the genetic origin of minute equant rutile inclusions in cloudy, nearly spherically shaped garnet domains with Ti‐depleted compositions surrounding quartz inclusions in ultrahigh‐pressure garnet from several diamondiferous Erzgebirge quartzofeldspathic gneissic rock samples. TEM analyses show that the equant rutile crystals in cloudy garnet domains are partially bounded by the low‐energy {100}rt ± {110}rt ± {101}rt facets and have rather random crystallographic orientation relationships (CORs) with the garnet host, with preferential alignment of low‐energy lattice planes, for example, {100}rt//{112}grt, for some rutile crystals. Although the rather random CORs are unlikely to be attributed to solid‐state exsolution subjected to the stringent topotactic garnet lattice constraints, the characteristic subhedral {100}rt ± {110}rt ± {101}rt crystal forms of rutile can be rationalized by a metasomatic dissolution‐reprecipitation mechanism via a fluid phase. In this scenario, the quartz+fluid inclusions in garnet were first subjected to decompression microcracking during rock exhumation, followed by dissolution of Ti‐bearing garnet matrix at the crack tips or along the crack surfaces and subsequent reprecipitation of rutile, apatite, gahnite, akdalaite, and Ti‐depleted garnet. The rapid coalescence between rutile and garnet crystals in fluid or direct attachment of rutile crystals onto the dissolving crack surfaces would then yield the rather random CORs as reported here. These results, along with previous work on rutile needles, indicate rather diverse genesis of rutile inclusions in various crystal forms, thus shedding light on the controversial exsolution origin for other inclusion suite/microstructure in minerals.  相似文献   
7.
Various tectonic models have been proposed to account for the widely distributed igneous activities in the southeastern part of the South China Block (SCB) during the Triassic–Jurassic period. One of the major contending debates is on the timing of initiation of the palaeo-Pacific plate subduction under the SCB, due to lack of unequivocal evidence for arc magmatism during the period in this region.

The 191 ± 10 Ma (N = 5, MSWD = 12) calc-alkalic high-K I-type Talun metagranite occurs in the southern Tailuko belt of the Tananao metamorphic complex, Taiwan. In terms of age, this metagranite belongs to the Early Yanshanian igneous activity in the southeastern part of the SCB. However, its geographic position does not accord with the well-known general oceanward younging trend of the Yansnanian igneous rocks. In view of the large age uncertainty reported, this metagranite is redated in this study. Some zircons of this metagranite are high in U content and are metamict. Zircons with low U contents are analysed by SHRIMP yielding a more precise age of 200 ± 2 Ma (N = 10, MSWD = 4). In particular, the εHf(t) of these dated zircons ranges from +4.5 to +12.9. The metagranite mainly consists of quartz, K-feldspar, plagioclase, with minor amounts of garnet, biotite, zircon, apatite, and pyrrhotite. Chlorite and calcite are secondary phases overprinted by the later tectonic event(s). Its initial Sr isotope compositional range is 0.70473–0.70588, and εNd(t), +2.4 to +3.6. The results demonstrate that the genesis of this metagranite could be attributed to the assimilation-fractionation of a depleted mantle-derived basaltic magma, which was most likely related to arc magmatism. The present study therefore offers key evidence that during the Mesozoic, the palaeo-Pacific plate subduction underneath the SCB would have taken place no later than the very early Jurassic.  相似文献   

8.
NE China is the easternmost part of the Central Asian Orogenic Belt (CAOB). The area is distinguished by widespread occurrence of Phanerozoic granitic rocks. In the companion paper (Part I), we established the Jurassic ages (184–137 Ma) for three granitic plutons: Xinhuatun, Lamashan and Yiershi. We also used geochemical data to argue that these rocks are highly fractionated I-type granites. In this paper, we present Sr–Nd–O isotope data of the three plutons and 32 additional samples to delineate the nature of their source, to determine the proportion of mantle to crustal components in the generation of the voluminous granitoids and to discuss crustal growth in the Phanerozoic.

Despite their difference in emplacement age, Sr–Nd isotopic analyses reveal that these Jurassic granites have common isotopic characteristics. They all have low initial 87Sr/86Sr ratios (0.7045±0.0015), positive Nd(T) values (+1.3 to +2.8), and young Sm–Nd model ages (720–840 Ma). These characteristics are indicative of juvenile nature for these granites. Other Late Paleozoic to Mesozoic granites in this region also show the same features. Sr–Nd and oxygen isotopic data suggest that the magmatic evolution of the granites can be explained in terms of two-stage processes: (1) formation of parental magmas by melting of a relatively juvenile crust, which is probably a mixed lithology formed by pre-existing lower crust intruded or underplated by mantle-derived basaltic magma, and (2) extensive magmatic differentiation of the parental magmas in a slow cooling environment.

The widespread distribution of juvenile granitoids in NE China indicates a massive transfer of mantle material to the crust in a post-orogenic tectonic setting. Several recent studies have documented that juvenile granitoids of Paleozoic to Mesozoic ages are ubiquitous in the Central Asian Orogenic Belt, hence suggesting a significant growth of the continental crust in the Phanerozoic.  相似文献   

9.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   
10.
Abstract An analytical electron microscope study of almandine garnet from a metamorphosed Al–Fe‐rich rock revealed detailed composition profiles and defect microstructures of resorption zoning along fluid‐infiltrated veins and even into the garnet/ilmenite (inclusion) interface. This indicates a limited volume diffusion for the cations in substitution (mainly Ca and Fe) and an interface‐controlled partition for the extension of a composition‐invariant margin. A corrugated interface between the Ca‐rich margin/zone and the almandine garnet core is characterized by dislocation arrays and recovery texture further suggesting a resorption process facilitated by diffusion‐induced recrystallization, diffusion‐induced dislocation migration and diffusion–induced grain boundary migration. Integrated microstructural and chemical studies are essential for understanding the underlying mechanisms of processes such as garnet zoning and its modification. Without this understanding, it will not be possible to reliably use garnet compositions for thermobarometry and other applications that rely on garnet chemical information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号