首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  国内免费   1篇
地质学   22篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  2010年   5篇
  2008年   1篇
  2006年   4篇
  2005年   3篇
  2001年   3篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有22条查询结果,搜索用时 62 毫秒
1.
International Journal of Earth Sciences - The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to...  相似文献   
2.
The role played by Paleoproterozoic cratons in southern South America from the Mesoproterozoic to the Early Cambrian is reconsidered here.This period involved protracted continental amalgamation that led to formation of the supercontinent Rodinia.followed by Neoproterozoic continental break-up,with the consequent opening of Clymene and Iapetus oceans,and finally continental re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early Cambrian.The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru.Our interpretation of the paleogeographical and geodynamic evolution invokes a hypothetical Paleoproterozoic block(MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras Pampeanas(Argentina),the Arequipa block(Peru),the Rio Apa block(Brazil),and probably also the Paraguaia block(Bolivia).  相似文献   
3.
A deformed ca. 570 Ma syenite–carbonatite body is reported from a Grenville-age (1.0–1.2 Ga) terrane in the Sierra de Maz, one of the Western Sierras Pampeanas of Argentina. This is the first recognition of such a rock assemblage in the basement of the Central Andes. The two main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-grained foliated biotite–calcite carbonatite. Samples of carbonatite and syenite yield an imprecise whole rock Rb–Sr isochron age of 582 ± 60 Ma (MSWD = 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238U ages between 433 and 612 Ma, with a prominent peak at 560–580 Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525 ± 7 Ma (Pampean orogeny) and at ca. 430–440 Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neo-proterozoic lower continental crust.  相似文献   
4.
The La Costa pluton in the Sierra de Velasco (NW Argentina) consists of S-type granitoids that can be grouped into three igneous facies: the alkali-rich Santa Cruz facies (SCF, SiO2 ~67 wt%) distinguished by the presence of andalusite and Na- and Li-rich cordierite (Na2O = 1.55–1.77 wt% and Li2O = 0.14–0.66 wt%), the Anillaco facies (SiO2 ~74 wt%) with a significant proportion of Mn-rich garnet, and the Anjullón facies (SiO2 ~75 wt%) with abundant albitic plagioclase. The petrography, mineral chemistry and whole-rock geochemistry of the SCF are compatible with magmatic crystallization of Na- and Li-rich cordierite, andalusite and muscovite from the peraluminous magma under moderate P–T conditions (~1.9 kbar and ca. 735°C). The high Li content of cordierite in the SCF is unusual for granitic rocks of intermediate composition.  相似文献   
5.
New U–Pb SHRIMP zircon ages combined with geochemical and isotope investigation in the Sierra de Maz and Sierra de Pie de Palo and a xenolith of the Precordillera basement (Ullún), provides insight into the identification of major Grenville-age tectonomagmatic events and their timing in the Western Sierras Pampeanas. The study reveals two contrasting scenarios that evolved separately during the 300 Ma long history: Sierra de Maz, which was always part of a continental crust, and the juvenile oceanic arc and back-arc sector of Sierra de Pie de Palo and Ullún. The oldest rocks are the Andino-type granitic orthogneisses of Sierra de Maz (1330–1260 Ma) and associated subalkaline basic rocks, that were part of an active continental margin developed in a Paleoproterozoic crust. Amphibolite facies metamorphism affected the orthogneisses at ca. 1175 Ma, while granulite facies was attained in neighbouring meta-sediments and basic granulites. Interruption of continental-edge magmatism and high-grade metamorphism is interpreted as related to an arc–continental collision dated by zircon overgrowths at 1170–1230 Ma. The next event consisted of massif-type anorthosites and related meta-jotunites, meta-mangerites (1092 ± 6 Ma) and meta-granites (1086 ± 10 Ma) that define an AMCG complex in Sierra de Maz. The emplacement of these mantle-derived magmas during an extensional episode produced a widespread thermal overprint at ca. 1095 Ma in neighbouring country rocks. In constrast, juvenile oceanic arc and back-arc complexes dominated the Sierra de Pie de Palo–Ullún sector, that was fully developed ca. 1200 Ma (1196 ± 8 Ma metagabbro). A new episode of oceanic arc magmatism at ~1165 Ma was roughly coeval with the amphibolite high-grade metamorphism of Sierra de Maz, indicating that these two sectors underwent independent geodynamic scenarios at this age. Two more episodes of arc subduction are registered in the Pie de Palo–Ullún sector: (i) 1110 ± 10 Ma orthogneisses and basic amphibolites with geochemical fingerprints of emplacement in a more mature crust, and (ii) a 1027 ± 17 Ma TTG juvenile suite, which is the youngest Grenville-age magmatic event registered in the Western Sierras Pampeanas. The geodynamic history in both study areas reveals a complex orogenic evolution, dominated by convergent tectonics and accretion of juvenile oceanic arcs to the continent.  相似文献   
6.
SW Iberia is interpreted as an accretionary magmatic belt resulting from the collision between the South Portuguese Zone and the autochthonous Iberian terrane in Variscan times (350 to 330 Ma). In the South Portuguese Zone, pull-apart basins were filled with a thick sequence of siliciclastic sediments and bimodal volcanic rocks that host the giant massive sulphides of the Iberian Pyrite Belt. Massive sulphides precipitated in highly efficient geochemical traps where metal-rich but sulphur-depleted fluids of dominant basinal derivation mixed with sulphide-rich modified seawater. Massive sulphides formed either in porous/reactive volcanic rocks by sub-seafloor replacement, or in dark shale by replacement of mud or by exhalation within confined basins with high biogenic activity. Crustal thinning and magma intrusion were responsible for thermal maturation and dehydration of sedimentary rocks, while magmatic fluids probably had a minor influence on the observed geochemical signatures.The Ossa Morena Zone was a coeval calc-alkaline magmatic arc. It was the site for unusual mineralization, particularly magmatic Ni–(Cu) and hydrothermal Fe-oxide–Cu–Au ores (IOCG). Most magmatism and mineralization took place at local extensional zones along first-order strike-slip faults and thrusts. The source of magmas and IOCG and Ni–(Cu) deposits probably lay in a large mafic–ultramafic layered complex intruded along a detachment at the boundary between the upper and lower crust. Here, juvenile melts extensively interacted with low-grade metamorphic rocks, inducing widespread anatexis, magma contamination and further exsolution of hydrothermal fluids. Hypersaline fluids (δ18Ofluid > 5.4‰ to 12‰) were focused upward into thrusts and faults, leading to early magnetite mineralization associated with a high-temperature (> 500 °C) albite–actinolite–salite alteration and subsequent copper–gold-bearing vein mineralization at somewhat lower temperatures. Assimilation of sediments by magmas led in turn to the formation of immiscible sulphide and silicate melts that accumulated in the footwall of the layered igneous complex. Further injection of both basic and sulphide-rich magmas into the upper crust led to the formation of Ni–(Cu)-rich breccia pipes.Younger (330 to 280 Ma?) peraluminous granitoids probably reflect the slow ascent of relatively dry and viscous magmas formed by contact anatexis. These granitoids have W–(Sn)- and Pb–Zn-related mineralization that also shows geochemical evidence of major mantle–crust interaction. Late epithermal Hg–(Cu–Sb) and Pb–Zn–(Ag) mineralization was driven by convective hydrothermal cells resulting from the high geothermal gradients that were set up in the zone by intrusion of the layered igneous complex. In all cases, most of the sulphur seems to have been derived from leaching of the host sedimentary rocks (δ34S = 7‰ to 20‰) with only limited mixing with sulphur of magmatic derivation.The metallogenic characteristics of the two terranes are quite different. In the Ossa Morena Zone, juvenile magmatism played a major role as the source of metals, and controlled the styles of mineralization. In the South Portuguese Zone, magmas only acted as heat sources but seem to have had no major influence as sources of metals and fluids, which are dominated by crustal signatures. Most of the magmatic and tectonic features related to the Variscan subduction and collision seem to be masked by those resulting from transpressional deformation and deep mafic intrusion, which led to the development of a metallogenic belt with little resemblance to other accretionary magmatic arcs.  相似文献   
7.
Metamorphism of Grenvillian age (ca. 1.2 Ga; U–Pb zircon dating) is recognized for the first time in the Western Sierras Pampeanas (Sierra de Maz). Conditions reached granulite facies (ca. 780 °C and ca. 780 MPa). Comparing geochronological and petrological characteristics with other outcrops of Mesoproterozoic basement, particularly in the northern and central Arequipa-Antofalla craton, we suggest that these regions were part of a single continental crustal block from Mesoproterozoic times, and thus autochthonous or parautochthonous to Gondwana.  相似文献   
8.
The Aguablanca Ni–(Cu) sulfide deposit is hosted by a breccia pipe within a gabbro–diorite pluton. The deposit probably formed due to the disruption of a partially crystallized layered mafic complex at about 12–19 km depth and the subsequent emplacement of melts and breccias at shallow levels (<2 km). The ore-hosting breccias are interpreted as fragments of an ultramafic cumulate, which were transported to the near surface along with a molten sulfide melt. Phlogopite Ar–Ar ages are 341–332 Ma in the breccia pipe, and 338–334 Ma in the layered mafic complex, and are similar to recently reported U–Pb ages of the host Aguablanca Stock and other nearby calc-alkaline metaluminous intrusions (ca. 350–330 Ma). Ore deposition resulted from the combination of two critical factors, the emplacement of a layered mafic complex deep in the continental crust and the development of small dilational structures along transcrustal strike-slip faults that triggered the forceful intrusion of magmas to shallow levels. The emplacement of basaltic magmas in the lower middle crust was accompanied by major interaction with the host rocks, immiscibility of a sulfide melt, and the formation of a magma chamber with ultramafic cumulates and sulfide melt at the bottom and a vertically zoned mafic to intermediate magmas above. Dismembered bodies of mafic/ultramafic rocks thought to be parts of the complex crop out about 50 km southwest of the deposit in a tectonically uplifted block (Cortegana Igneous Complex, Aracena Massif). Reactivation of Variscan structures that merged at the depth of the mafic complex led to sequential extraction of melts, cumulates, and sulfide magma. Lithogeochemistry and Sr and Nd isotope data of the Aguablanca Stock reflect the mixing from two distinct reservoirs, i.e., an evolved siliciclastic middle-upper continental crust and a primitive tholeiitic melt. Crustal contamination in the deep magma chamber was so intense that orthopyroxene replaced olivine as the main mineral phase controlling the early fractional crystallization of the melt. Geochemical evidence includes enrichment in SiO2 and incompatible elements, and Sr and Nd isotope compositions (87Sr/86Sri 0.708–0.710; 143Nd/144Ndi 0.512–0.513). However, rocks of the Cortegana Igneous Complex have low initial 87Sr/86Sr and high initial 143Nd/144Nd values suggesting contamination by lower crustal rocks. Comparison of the geochemical and geological features of igneous rocks in the Aguablanca deposit and the Cortegana Igneous Complex indicates that, although probably part of the same magmatic system, they are rather different and the rocks of the Cortegana Igneous Complex were not the direct source of the Aguablanca deposit. Crust–magma interaction was a complex process, and the generation of orebodies was controlled by local but highly variable factors. The model for the formation of the Aguablanca deposit presented in this study implies that dense sulfide melts can effectively travel long distances through the continental crust and that dilational zones within compressional belts can effectively focus such melt transport into shallow environments.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
9.
The Neoproterozoic to Early Cambrian amalgamation of SW Gondwana through the Brasiliano/Pan-African orogeny is reviewed with emphasis on the role of the Río de la Plata craton of South America in the light of new evidence from a borehole at the eastern end of the Tandilia belt (38°S). U–Pb, Hf and O isotope data on zircon indicate that this un-reworked Palaeoproterozoic craton abuts against a distinct continental terrane to the east (Mar del Plata terrane). The craton is bounded everywhere by transcurrent faults and there is no evidence to relate it to the Neoproterozoic mobile belts now seen on either side. The Punta Mogotes Formation at the bottom of the borehole contains 740–840 Ma detrital zircons that are assigned to a widespread Neoproterozoic rifting event. The data suggest that the Mar del Plata terrane rifted away from the southwestern corner of the Angola block at c. 780 Ma. Negative εHft values and δ18O > 6.5‰ suggest derivation by melting of old crust during a protracted extensional episode. Other continental terranes may have formed in a similar way in Uruguay (Nico Pérez) and southeastern Brazil, where the Schist Belt of the Dom Feliciano orogenic belt is probably a correlative of the Punta Mogotes sequence, implying that the Dom Feliciano belt must extend at least as far as 38°S. A new geodynamic scenario for West Gondwana assembly includes at least two major oblique collisional orogenies: Kaoko–Dom Feliciano (580–680 Ma) and Gariep–Saldania (480–580 Ma), the latter resulting from oblique impingement of the Rio de la Plata craton against the Kalahari craton. Assembly of this part of South-West Gondwana was accomplished before the Ordovician (to Silurian?) siliciclastic platform sediments of the Balcarce Formation in the Tandilia Belt covered the southern sector of Río de la Plata craton.  相似文献   
10.
The enigmatic Arequipa Massif of southwestern Peru is an outcrop of Andean basement that underwent Grenville-age metamorphism, and as such it is important for the better constraint of Laurentia–Amazonia ties in Rodinia reconstruction models. U–Pb SHRIMP zircon dating has yielded new evidence on the evolution of the Massif between Middle Paleoproterozoic and Early Paleozoic. The oldest rock-forming events occurred in major orogenic events between ca. 1.79 and 2.1 Ga (Orosirian to Rhyacian), involving early magmatism (1.89–2.1 Ga, presumably emplaced through partly Archaean continental crust), sedimentation of a thick sequence of terrigenous sediments, UHT metamorphism at ca. 1.87 Ga, and late felsic magmatism at ca. 1.79 Ga. The Atico sedimentary basin developed in the Late-Mesoproterozoic and detrital zircons were fed from a source area similar to the high-grade Paleoproterozoic basement, but also from an unknown source that provided Mesoproterozoic zircons of 1200–1600 Ma. The Grenville-age metamorphism was of low-P type; it both reworked the Paleoproterozoic rocks and also affected the Atico sedimentary rocks. Metamorphism was diachronous: ca. 1040 Ma in the Quilca and Camaná areas and in the San Juán Marcona domain, 940 ± 6 Ma in the Mollendo area, and between 1000 and 850 Ma in the Atico domain. These metamorphic domains are probably tectonically juxtaposed. Comparison with coeval Grenvillian processes in Laurentia and in southern Amazonia raises the possibility that Grenvillian metamorphism in the Arequipa Massif resulted from extension and not from collision. The Arequipa Massif experienced Ordovician–Silurian magmatism at ca. 465 Ma, including anorthosites formerly considered to be Grenvillian, and high-T metamorphism deep within the magmatic arc. Focused retrogression along shear zones or unconformities took place between 430 and 440 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号