首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  2023年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
文章以莱州湾凹陷垦利油田沙河街组储层为例,对传统的回归统计模型和基于BP神经网络的人工智能预测模型评价储层渗透率方法和效果进行了对比研究。目标储量报告里定火沙三段中孔、中渗;岩性(粒度)和孔隙度是储层渗透率的主要影响因素。根据岩心及测井数据,建立了孔隙度——粒度二元回归渗透率统计评价模型和BP神经网络渗透率预测模型。通过检验样本集精度对比,分析了隐含层数、隐含层节点数等网络结构参数变化对模型预测结果的影响,重点分析了不同的测井参数输入对BP神经网络模型预测结果的影响。优化后的BP神经网络模型对检验样本集的渗透率预测结果精度最高,其平均相对误差为37%,比传统的二元回归统计模型精度提高了26%。对目标油田三口井连续处理,BP神经网络模型渗透率预测结果更加合理,可以满足开发层段产能分析等生产需求。  相似文献   
2.
岩石矿物组分含量是地球物理勘探开发中的重点关注对象.在岩心与地层元素测井资料较少的情况下,如何提高矿物组分含量参数的预测精度显得尤为关键.本文采用深度学习方法,利用常规测井曲线对来自于地层元素测井获得的矿物组分含量进行预测.首先基于残差网络(ResNet)框架,利用一维卷积核和池化核构建了卷积神经网络模型.模型采用自然伽马、自然电位、井径、阵列感应电阻率、三孔隙度以及光电吸收截面指数测井参数作为输入,地层元素测井获得的矿物组分含量作为输出.随后对所搭建卷积神经网络进行了训练,建立了输入与输出之间的实际映射关系.最后,利用测试数据集和真实地层资料,对所建立的卷积神经网络进行了精度检验,并与人工神经网络和多元线性回归的评价结果进行了比较.结果显示,卷积神经网络在测试数据集上的总体预测数值相关性为0.90,明显优于人工神经网络的0.68与多元线性回归的0.51.通过处理实际测井资料,进一步验证了该方法的预测优越性和鲁棒性,以及其在地层参数评价方向的良好应用前景.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号