首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   6篇
测绘学   5篇
大气科学   33篇
地球物理   65篇
地质学   170篇
海洋学   30篇
天文学   41篇
自然地理   29篇
  2019年   4篇
  2017年   3篇
  2016年   7篇
  2015年   8篇
  2014年   12篇
  2013年   19篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   14篇
  2008年   15篇
  2007年   13篇
  2006年   9篇
  2005年   7篇
  2004年   12篇
  2003年   8篇
  2002年   9篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1998年   13篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   4篇
  1993年   3篇
  1990年   3篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   6篇
  1976年   7篇
  1974年   4篇
  1970年   3篇
  1965年   4篇
  1964年   3篇
  1955年   3篇
  1951年   3篇
  1932年   2篇
  1928年   2篇
  1927年   2篇
  1926年   3篇
  1925年   2篇
  1914年   3篇
排序方式: 共有373条查询结果,搜索用时 31 毫秒
1.
This paper presents the development of spectral hazard maps for Sumatra and Java islands, Indonesia and microzonation study for Jakarta city. The purpose of this study is to propose a revision of the seismic hazard map in Indonesian Seismic Code SNI 03-1726-2002. Some improvements in seismic hazard analysis were implemented in the analysis by considering the recent seismic activities around Java and Sumatra. The seismic hazard analysis was carried out using 3-dimension (3-D) seismic source models (fault source model) using the latest research works regarding the tectonic setting of Sumatra and Java. Two hazard levels were analysed for representing 10% and 2% probability of exceedance (PE) in 50 years ground motions for Sumatra and Java. Peak ground acceleration contour maps for those two hazard levels and two additional macrozonation maps for 10% PE in 50 years were produced during this research. These two additional maps represent short period (0.2 s) and long-period (1.0 s) spectra values at the bedrock. Microzonation study is performed in order to obtain ground motion parameters such as acceleration, amplification factor and response spectra at the surface of Jakarta. The analyses were carried out using nonlinear approach. The results were used to develop contour of acceleration at the surface of Jakarta. Finally, the design response spectra for structural design purposes are proposed in this study.  相似文献   
2.
3.
Thermodynamic stability constants have been estimated for the complexation of iron(III) with catecholate-type siderophores isolated from the marine bacterium Alteromonas luteoviolacea and from the marine cyanobacterium Synechococcus sp. PCC 7002. Stability constants were determined utilizing the “chelate scale” of Taylor et al. (1994). The scale is based upon a linear relationship between the reduction potentials and the pH-independent thermodynamic stability constants for known iron(III) complexes. Log K values for the alterobactin B ferric iron complex are 43.6 ± 1.5 at pH 8.2 and 37.6 ± 1.2 at pH 6, consistent with a shift from bis-catecholate to monosalicylate/monocatecholate iron coordination with decreasing pH. Synechococcus isolates PCC 7002 Nos. 1 and 3 formed iron(III) complexes with stability constants of approximately 38.1 ± 1.2 and 42.3 ± 1.5, respectively. The binding strengths of the iron(III) complexes examined in this study are quite high, suggesting that catecholate siderophores may play a role in the solubilization and biological uptake of iron in the marine environment.  相似文献   
4.
This paper described a procedure for simulation of the outer dynamics in ship collisions.The simulation procedure is derived using the transient equations for the horizontal motion of a ship. The hydrodynamic forces acting on the ships' hull during the collision are calculated by a strip method, where the forces acting on each section are described by means of unit response functions. These functions are determined by cosine transformation of the sectional dampings. The sectional added masses and dampings, and thereby also the sectional unit response functions, are calculated by an approximate method. The deformations of the slip structures during the collisions are modelled as non-linear springs.The resulting system of non-linear equations is solved using a numerical time-integration procedure.A number of different collision situations are simulated by means of the procedure.  相似文献   
5.
Macrourus berglax from the East Greenland Sea was studied for the presence of ascaridoid nematodes in 2001, 2002 and 2003. The fishes were collected between 278 and 413 m water depth using a benthopelagic net. Based on the amplification of the internal transcribed spacer ITS-1, 5.8S, ITS-2 and flanking sequences (=ITS+), three ascaridoid nematode species were identified. The prevalence of infestation during the 3 years ranged from 42.9% to 62.9% and 22.9% to 40.0% for the anisakids Anisakis simplex (s.s.) and Pseudoterranova decipiens (s.s.), respectively, and from 28.6% to 60.0% for the raphidascarid Hysterothylacium aduncum. A total of 18 specimens, two of each species and examination year, revealed no sibling species, suggesting a limited distribution of other ascaridoid siblings into the deep sea. The ITS-1, 5.8S and ITS-2 sequences of A. simplex (s.s.) from the East Greenland Sea did not differ from previously published sequence data (GenBank) from other regions in the Atlantic and Pacific oceans. The sequences of P. decipiens (s.s.) corresponded most closely to those of specimens from Richardson Bay, western Pacific, and differed in four positions (0.5%). They corresponded least to those of specimens from Japan (1.5%). The sequence data for H. aduncum differed in two positions in the ITS-1 (0.2%) and three positions in the ITS-2 (0.3%) from sequences from Japan. A high genetic similarity between the regions can be explained by (a) extensive final host migration in the case of A. simplex (s.s.), (b) an overlapping distribution of final host populations along the continental shelves for P. decipiens (s.s.) and (c) a low host specificity and large population size in the intermediate and final hosts for H. aduncum. The occurrence of the identified species in the macrourid fish underlines the potential of cosmopolitan ascaridoid nematodes to distribute not only horizontally but also vertically in the deep sea.  相似文献   
6.
A worldwide data set of more than 500 humic coals from the major coal-forming geological periods has been used to analyse the evolution in the remaining (Hydrogen Index, HI) and total (Quality Index, QI) generation potentials with increasing thermal maturity and the ‘effective oil window’ (‘oil expulsion window’). All samples describe HI and QI bands that are broad at low maturities and that gradually narrow with increasing maturity. The oil generation potential is completely exhausted at a vitrinite reflectance of 2.0–2.2%Ro or Tmax of 500–510 °C. The initial large variation in the generation potential is related to the original depositional conditions, particularly the degree of marine influence and the formation of hydrogen-enriched vitrinite, as suggested by increased sulphur and hydrogen contents. During initial thermal maturation the HI increases to a maximum value, HImax. Similarly, QI increases to a maximum value, QImax. This increase in HI and QI is related to the formation of an additional generation potential in the coal structure. The decline in QI with further maturation is indicating onset of initial oil expulsion, which precedes efficient expulsion. Liquid petroleum generation from humic coals is thus a complex, three-phase process: (i) onset of petroleum generation, (ii) petroleum build-up in the coal, and (iii) initial oil expulsion followed by efficient oil expulsion (corresponding to the effective oil window). Efficient oil expulsion is indicated by a decline in the Bitumen Index (BI) when plotted against vitrinite reflectance or Tmax. This means that in humic coals the vitrinite reflectance or Tmax values at which onset of petroleum generation occurs cannot be used to establish the start of the effective oil window. The start of the effective oil window occurs within the vitrinite reflectance range 0.85–1.05%Ro or Tmax range 440–455 °C and the oil window extends to 1.5–2.0%Ro or 470–510 °C. For general use, an effective oil window is proposed to occur from 0.85 to 1.7%Ro or from 440 to 490 °C. Specific ranges for HImax and the effective oil window can be defined for Cenozoic, Jurassic, Permian, and Carboniferous coals. Cenozoic coals reach the highest HImax values (220–370 mg HC/g TOC), and for the most oil-prone Cenozoic coals the effective oil window may possibly range from 0.65 to 2.0%Ro or 430 to 510 °C. In contrast, the most oil-prone Jurassic, Permian and Carboniferous coals reach the expulsion threshold at a vitrinite reflectance of 0.85–0.9%Ro or Tmax of 440–445 °C.  相似文献   
7.
The bulk composition of organic matter and saturated and aromatic hydrocarbons extracted from 16 samples collected from two Kuperschiefer profiles in the Rudna mine,Southwest Poland has been analyzed to study the role of organic matter during base metal enrichment in the Kupferschiefer shale.The results indicated that the extract yields and saturated hydrocarbon yields decreased with increasing base metal contents.GC and GC/MS analyses indicated that n -alkanes and alkylated aromatic compounds were depleted and may have served as hydrogen donators for thermochemical sulfate reduction.The enrichment of base metal is closely connected with the destruction of hydrocarbons.  相似文献   
8.
 The beginning of dehydration melting in the tonalite system (biotite-plagioclase-quartz) is investigated in the pressure range of 2–12 kbar. A special method consisting of surrounding a crystal of natural plagioclase (An45) with a biotite-quartz mixture, and observing reactions at the plagioclase margin was employed for precise determination of the solidus for dehydration melting. The beginning of dehydration melting was worked out at 5 kbar for a range of compositions of biotite varying from iron-free phlogopite to iron-rich Ann70, with and without titanium, fluorine and extra aluminium in the biotite. The dehydration melting of phlogopite + plagioclase (An45) + quartz begins between 750 and 770°C at pressures of 2 and 5 kbar, at approximately 740°C at 8 kbar and between 700 and 730°C at 10 kbar. At 12 kbar, the first melts are observed at temperatures as low as 700°C. The data indicate an almost vertical dehydration melting solidus curve at low pressures which bends backward to lower temperatures at higher pressures (> 5 kbar). The new phases observed at pressures ≤ 10 kbar are melt + enstatite + clinopyroxene + potassium feldspar ± amphibole. In addition to these, zoisite was also observed at 12 kbar. With increasing temperature, phlogopite becomes enriched in aluminium and deficient in potassium. Substitution of octahedral magnesium by aluminium and titanium in the phlogopite, as well as substitution of hydroxyl by fluorine, have little effect on the beginning of dehydration melting temperatures in this system. The dehydration melting of biotite (Ann50) + plagioclase (An45) + quartz begins 50°C below that of phlogopite bearing starting composition. Solid reaction products are orthopyroxene + clinopyroxene + potassium feldspar ± amphibole. Epidote was also observed above 8 kbar, and garnet at 12 kbar (750°C). The experiments on the iron-bearing system performed at ≤ 5 kbar were buffered with NiNiO. The f O 2 in high pressure runs lies close to CoCoO. With the substitution of octahedral magnesium and iron by aluminium and titanium, and replacement of hydroxyl by fluorine in biotite, the beginning of dehydration melting temperatures in this system increase up to 780°C at 5 kbar, which is 70°C above the beginning of dehydration melting of the assemblage containing biotite (Ann50) of ideal composition. The dehydration melting at 5 kbar in the more iron-rich Ann70-bearing starting composition begins at 730°C, and in the Ann25-bearing assemblage at 710°C. This indicates that quartz-biotite-plagioclase assemblages with intermediate compositions of biotite (Ann25 and Ann50) melt at lower temperatures as compared to those containing Fe-richer or Mg-richer biotites. This study shows that the dehydration melting of tonalites may begin at considerably lower temperatures than previously thought, especially at high pressures (>5 kbar). Received: 27 December 1995 / Accepted: 7 May 1996  相似文献   
9.
Dehydration melting of tonalites. Part II. Composition of melts and solids   总被引:6,自引:0,他引:6  
 Dehydration melting of tonalitic compositions (phlogopite or biotite-plagioclase-quartz assemblages) is investigated within a temperature range of 700–1000°C and pressure range of 2–15 kbar. The solid reaction products in the case of the phlogopite-plagioclase(An45)-quartz starting material are enstatite, clinopyroxene and potassium feldspar, with amphiboles occurring occasionally. At 12 kbar, zoisite is observed below 800°C, and garnet at 900°C. The reaction products of dehydration melting of the biotite (Ann50)-plagioclase (An45)-quartz assemblage are melt, orthopyroxene, clinopyroxene, amphibole and potassium feldspar. At pressures > 8 kbar and temperatures below 800°C, epidote is also formed. Almandine-rich garnet appears above 10 kbar at temperatures ≥ 750°C. The composition of melts is granitic to granodioritic, hence showing the importance of dehydration melting of tonalites for the formation of granitic melts and granulitic restites at pressure-temperature conditions within the continental crust. The melt compositions plot close to the cotectic line dividing the liquidus surfaces between quartz and potassium feldspar in the haplogranite system at 5 kbar and a H 2O = 1. The composition of the melts changes with the composition of the starting material, temperature and pressure. With increasing temperature, the melt becomes enriched in Al2O3 and FeO+MgO. Potash in the melt is highest just when biotite disappears. The amount of CaO decreases up to 900°C at 5 kbar whereas at higher temperatures it increases as amphibole, clinopyroxene and more An-component dissolve in the melt. The Na2O content of the melt increases slightly with increase in temperature. The composition of the melt at temperatures > 900°C approaches that of the starting assemblage. The melt fraction varies with composition and proportion of hydrous phases in the starting composition as well as temperature and pressure. With increasing modal biotite from 20 to 30 wt%, the melt proportion increases from 19.8 to 22.3 vol.% (850°C and 5 kbar). With increasing temperature from 800 to 950°C (at 5 kbar), the increase in melt fraction is from 11 to 25.8 vol.%. The effect of pressure on the melt fraction is observed to be relatively small and the melt proportion in the same assemblage decreases at 850°C from 19.8 vol.% at 5 kbar to 15.3 vol.% at 15 kbar. Selected experiments were reversed at 2 and 5 kbar to demonstrate that near equilibrium compositions were obtained in runs of longer duration. Received: 27 December 1995 / Accepted: 7 May 1996  相似文献   
10.
Analyses of stream sediment and soil samples from the Bushveld Complex, South Africa have revealed enhanced precious metal concentrations, which can be related both to mining activities and the presence of hidden concentrations of platinum-group elements (PGEs) and gold. The economically important PGE deposits hosted by the Upper Critical Zone of the Rustenburg Layered Suite are revealed by a high PGE and Au content in the overlying soils. A second zone of elevated precious metal concentrations straddles the boundary between the Main and Upper Zones and has to date been traced for more than 100 km. This zone follows the igneous layering of the Rustenburg Layered Suite and is offset by the Brits Graben. It is therefore thought to be the reflection of a magmatic PGE-Au mineralisation. Received: 31 May 1996 / Accepted: 7 January 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号