首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   8篇
  国内免费   3篇
大气科学   8篇
地球物理   50篇
地质学   51篇
海洋学   55篇
天文学   32篇
自然地理   7篇
  2024年   1篇
  2022年   1篇
  2021年   7篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   10篇
  2015年   5篇
  2014年   9篇
  2013年   11篇
  2012年   6篇
  2011年   6篇
  2010年   18篇
  2009年   17篇
  2008年   7篇
  2007年   14篇
  2006年   13篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   7篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有203条查询结果,搜索用时 31 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
We report Os isotope compositions of metal grains in two CBa chondrites (Bencubbin and Gujba) determined using a micromilling sampling coupled with thermal ionization mass spectrometry, together with the abundances of major and trace siderophile elements obtained by electron probe microanalysis and femtosecond laser ablation inductively coupled plasma–mass spectrometry. The CBa metal grains presented 187Os/188Os ratios akin to carbonaceous chondrites with limited variations (0.1257–0.1270). Most of the CBa metal grains were scattered along a 187Re-187Os reference isochron of IIIAB iron meteorites, indicating that the CBa metals experienced limited Re-Os fractionation at the time of their formation. The Re/Os ratios of sampling spots for the CBa metals, recast from the observed 187Os/188Os ratios, had a positive correlation with their Os/Ir ratios. In addition, the metal grains showed a positive correlation in a Pd/Fe versus Ni/Fe diagram. These correlations suggest that the CBa metal grains have formed via equilibrium condensation or evaporation from a gaseous reservoir at ~10−4 bar with enhanced metal abundances. Compared to the Bencubbin metals, the Gujba metals are characterized by having systematically lower Pd/Fe and Ni/Fe ratios that span subchondritic values. Such a difference was most likely induced by the compositionally heterogeneous impact plume from which the metals were condensed.  相似文献   
3.
The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that plateau subsidence and chaos formation may have continued well into the Amazonian Period. The geologic and paleohydrologic histories presented here have important implications, as new mechanisms for outflow channel formation and other fluvial activity are described, and new reactivation mechanisms are proposed for the origin of chaotic terrain as contributors to flooding. Detailed geomorphic analysis indicates that subterranean caverns may have been exposed during chaos formation, and thus chaotic terrains mark prime locations for future geologic, hydrologic, and possible astrobiologic exploration.  相似文献   
4.
A new photographic method suitable for digital processing of a two-dimensional density distribution of lunar eclipse shadow has been developed and it has been applied to the observation of the eclipse of December 30, 1982. The principle of this method is to extract the terrestrial shadow by utilizing immediate post- or pre-eclipse full Moon image as a reference template. The uncertainties of the obtained shadow maps in density and position are mostly 0.03–0.05 and 10–15 respectively. Iso-density contours of the penumbra have revealed unknown systematic deviations from a geometrical (concentric) shadow model in terms of their directions of center and radii of curvature. A density map of the umbra has shown very irregular shapes of isophotoes and density variation in the outer umbra has been proved to be consistent with the optical depth measurement of the stratosphere performed in the same period of time with lidars and aircrafts. Geographic consideration of the shadow terminator on the Earth suggests that the remnant aerosols above the northern Pacific and northern Europe flown up by a Mexican volcano 8 months ago prior to this eclipse will be mainly responsible for the formation of such variation of density in the outer penumbra.On leave from Tokyo Astronomical Observatory as Visiting Scientist (from 28 Aug. 1984 to 27 Aug. 1985).  相似文献   
5.
Circulation on the north central Chukchi Sea shelf   总被引:8,自引:0,他引:8  
Mooring and shipboard data collected between 1992 and 1995 delineate the circulation over the north central Chukchi shelf. Previous studies indicated that Pacific waters crossed the Chukchi shelf through Herald Valley (in the west) and Barrow Canyon (in the east). We find a third branch (through the Central Channel) onto the outer shelf. The Central Channel transport varies seasonally in phase with Bering Strait transport, and is 0.2 Sv on average, although some of this might include water entrained from the outflow through Herald Valley. A portion of the Central Channel outflow moves eastward and converges with the Alaskan Coastal Current at the head of Barrow Canyon. The remainder appears to continue northeastward over the central outer shelf toward the shelfbreak, joined by outflow from Herald Valley. The mean flow opposes the prevailing winds and is primarily forced by the sea-level slope between the Pacific and Arctic oceans. Current variations are mainly wind forced, but baroclinic forcing, associated with upstream dense-water formation in coastal polynyas might occasionally be important.Winter water-mass modification depends crucially on the fall and winter winds, which control seasonal ice development. An extensive fall ice cover delays cooling, limits new ice formation, and results in little salinization. In such years, Bering shelf waters cross the Chukchi shelf with little modification. In contrast, extensive open water in fall leads to early and rapid cooling, and if accompanied by vigorous ice production within coastal polynyas, results in the production of high-salinity (>33) shelf waters. Such interannual variability likely affects slope processes and the transport of Pacific waters into the Arctic Ocean interior.  相似文献   
6.
High resolution SeaWiFS data was used to detect red tide events that occurred in the Ariake Sound, Japan, a small embayment known as one of the most productive areas in Japan. SeaWiFS chlorophyll data clearly showed that a large red tide event, which damaged seaweed (Nori) cultures, started early in December 2000 in Isahaya Bay, expanded to the whole sound and persisted to the end of February 2001. The monthly average of SeaWiFS data from May 1998 to December 2001 indicated that the chlorophyll peaks appeared twice a year, in early summer and in fall, after the peaks of rain and river discharge. The SeaWiFS data showed that the red tide event during 2000–2001 winter was part of the fall bloom; however, it started later and continued significantly longer than other years. Satellite ocean color data is useful to detect the red tide; however the algorithms require improvement to accurately estimate chlorophyll in highly turbid water and in red tide areas.  相似文献   
7.
Porewater nutrient dynamics during emersion and immersion were investigated during different seasons in a eutrophic intertidal sandflat of Tokyo Bay, Japan, to elucidate the role of emersion and immersion in solute transport and microbial processes. The water content in the surface sediment did not change significantly following emersion, suggesting that advective solute transport caused by water table fluctuation was negligible. The rate of change in nitrate concentration in the top 10 mm of sediments ranged from −6.6 to 4.8 μmol N l−1 bulk sed. h−1 during the whole period of emersion. Steep nutrient concentration gradients in the surface sediment generated diffusive flux of nutrients directed downwards into deeper sediments, which greatly contributed to the observed rates of change in porewater nutrient concentration for several cases. Microbial nitrate reduction within the subsurface sediment appeared to be strongly supported by the downward diffusive flux of nitrate from the surface sediment. The stimulation of estimated nitrate production rate in the subsurface layer in proportion to the emersion time indicates that oxygenation due to emersion caused changes in the sediment redox environment and affected the nitrification and/or nitrate reduction rates. The nitrate and soluble reactive phosphorus pools in the top 10 mm of sediment decreased markedly during immersion (up to 68% for nitrate and up to 44% for soluble reactive phosphorus), however, this result could not be solely explained by molecular diffusion.  相似文献   
8.
In order to determine why the sedimentation to supply ratio of nutrients in Tokyo Bay is markedly small, the nitrogen budget was investigated for 1979, when a systematic and continuous observation of flow and salinity was carried out. The data were analyzed by use of a simple advective-diffusive box model and dissolved oxygen balance in the lower layer was also examined. The calculated values of two-layer flow, settling, primary production, mineralization, denitrification, and dissolved oxygen consumption were comparable to those observed.The factors making the sedimentation to supply ratio makedly small were summarized as: 1) a strong and stable two-layer flow generated by a large freshwater supply, 2) further intensification of this two-layer flow by the northern winter monsoon, 3) coincidence of the discharge region with the supply region of nutrients caused by the transverse inclination of the interface, probably due to the earth's rotation. 4) effective discharge of nutrients from the bay due to a strong tidal flow and a possible cyclonic tidal residual circulation in the inner bay mouth, 5) incomplete consumption of nutrient salts by phytoplankton in the upper layer even in the most productive season, and 6) possible denitrification in the anaerobic bottom water in summer and in the bottom sediment itself throughout the year in the inner bay.  相似文献   
9.
Vertical distribution of anthropogenic carbon content of the water (exDIC) in the Oyashio area just outside of the Kuroshio/Oyashio Interfrontal Zone (K/O Zone) was estimated by the simple 1-D advection-diffusion model calibrated by the distribution of chlorofluorocarbons (CFCs). The average concentration of exDIC for = 26.60–27.00 is multiplied by the volume transport of Oyashio water into the North Pacific Intermediate Water (NPIW) to estimate the annual transport of exDIC into NPIW through K/O Zone. The estimated transport of exDIC was 0.018–0.020 GtC/y, which corresponds to 15% of the whole total exDIC accumulation in the temperate North Pacific. A simple assessment using the NPIW 1-box model indicates that the current study explains at least 70% of the total annual transport of exDIC into NPIW, and that small exDIC sources for NPIW still exists in addition to K/O Zone.  相似文献   
10.
Jellyfish patch formation is investigated by conducting a drifter experiment combined with aerial photography of a sustained patch of the moon jellyfish in Hokezu Bay, Japan. Jellyfish patches are aggregations of individuals that are caused by a combination of swimming (active influence) and advection by currents (passive influence). The drifter experiment involved the injection of 49 drifters around a distinct surface patch of jellyfish within an area of approximately 300 m × 300 m. The drifters’ motion, caused only by the passive influence, was recorded in a series of 38 aerial photographs taken over approximately 1 h. The ambient uniform current field larger than the patch scale was estimated from the movement of the centroid position of drifters, while the distribution of horizontal divergence and relative vorticity around the patch was estimated from the time-derivative in areas of triangles formed by the drifters. The centroid positions of both drifters and patches moved stably toward the bay head at different speeds. The difference vector between the patch and drifter centroids was directed to the sun, and was opposite to the ambient current. The distributions of vorticity and divergence around patches exhibited inhomogeneity within the patch scale, and the drifters in this nonuniform current field aggregated near the convergence area within 1 h. The results suggest that horizontal patch formation is predominantly influenced by passive factors at the surface of Hokezu Bay. Furthermore, the upward swimming against downwelling may make sustained patch in surface layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号