首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   3篇
  国内免费   1篇
测绘学   7篇
大气科学   3篇
地球物理   17篇
地质学   49篇
海洋学   3篇
天文学   11篇
综合类   2篇
自然地理   5篇
  2021年   3篇
  2020年   6篇
  2019年   1篇
  2018年   5篇
  2017年   13篇
  2016年   10篇
  2015年   3篇
  2014年   10篇
  2013年   5篇
  2012年   5篇
  2011年   9篇
  2009年   7篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1995年   2篇
  1993年   1篇
  1988年   2篇
  1980年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有97条查询结果,搜索用时 109 毫秒
1.
A novel technique in analyzing non-linear wave-wave interaction   总被引:1,自引:0,他引:1  
During wave growth non-linear wave–wave interactions cause transfer of some wave energy from lower to higher wave periods as the spectrum grows. Wavelet bicoherence, which is a new technique in the analysis of wind–wave and wave–wave interactions, is used to analyze non-linear wave–wave interactions. A selected record of wind wave that contains the maximum wave height observed during 6 h of wave generation is divided into five segments and wavelet bicoherence is computed for the whole record, and for all divided segments. The study shows that the non-linear wave–wave interaction occurs at different bicoherence levels and these levels are different from one segment to another due to the non-stationarity feature of the examined data set.  相似文献   
2.
TheK p-indices measured at Misallat station [ø = 29°45 N; = 30°54 E] during the period 1958–1989, have been compared with the data of two geomagnetic stations; one of them has similar longitude as Misallat and the second has almost similar latitude. The spectra of daily and hourly data of the three stations are compared together to define the latitude and longitude-effects on the detected periodicities. Daily periodicities ofK p-index activities at the values 32.7, 21.2, 12.9, 11.6 and 9.2 days have been obtained to be common in the spectra of the three stations. The existence of 5-days periodicity in these stations has also been detected.  相似文献   
3.
Station recording air temperature (Ta) has limited spatial coverage, especially in unpopulated areas. Since temperature can change greatly both spatially and temporally, stations data are often inadequate for meteorology and subsequently climatology studies. Time series of moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (Ts) and normalized difference vegetation index (NDVI) products, combined with digital elevation model (DEM), albedo from Era-Interim and meteorological data from 2006 to 2015, were used to estimate daily mean air temperature over Iran. Geographically weighted regression was applied to compare univariate and multivariate model accuracy. In the first model, which only interfered with land surface temperature (LST), the results indicate a weak performance with coefficient of determination up to 91% and RMSE of 1.08 to 2.9 °C. The mean accuracy of a four-variable model (which used LST, elevation, slope, NDVI) slightly increased (6.6% of the univariate model accuracy) when compared to univariate model. RMSE dropped by 19% of the first model. By addition albedo in the third model, the coefficient of determination increased significantly. This increase was 32% of the univariate model and 23.75% of the 4-variable model accuracy. The statistical comparison between the three models revealed that there is significant improvement in air estimation by applying the geographically weighted regression (GWR) method with interfering LST, NDVI, elevation, slope, and albedo with mean absolute RMSE of 0.62 °C and mean absolute R2 of 0.99. In order to better illustrate the third model, t values were spatially mapped at 0.05 level.  相似文献   
4.
Cloud types have a substantial influence on precipitation. This paper presents a study of the monthly variations of daytime different cloud types over Iran using data collected from Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra during 2001–2015, MODIS aboard Aqua during 2002–2015, International Satellite Cloud Climatology Project (ISCCP) H-series cloud type data during 2001–2009 and precipitation rate associated with different cloud types using Tropical Rainfall Measuring Mission (TRMM) satellite products during 2001–2009. Different cloud types were determined using MODIS cloud optical thickness and cloud top pressure data based on ISCCP algorithm. The results showed that stratocumulus and cumulus clouds have maximum occurrence frequency over marine areas especially southern seas. The maximum frequency of nimbostratus and deep convective occurrence occurred over mountainous regions particularly at the time of Aqua overpass and cirrus and cirrostratus are observed over southeast of Iran during warm months due to monsoon system. Altostratus cloud is extended in each month except January, at the time of Terra overpass while nimbostratus is seen at the time of Aqua overpass during warm months in the study area. Cumulus and altocumulus clouds have shown remarkable frequency in all months especially over marine regions during warm and fall months. The higher value of precipitation rate is related to altostratus with a rate approximately 7 mm/h at the time of Terra overpass during April. Altostratus has the maximum recorded precipitation rate except in Nov., Dec., Sep., and Jan. at the time of Terra overpass, whereas the maximum precipitation rate is linked to nimbostratus cloud activity (up to 5 mm/h) except for March, April, and Sep. at the time of Aqua overpass. Deep convective (up to 1.32 mm/h), cirrostratus (up to 1.11 mm/h), and cirrus (0.02 mm/h) are observed only in warm months. The results were compared with ISCCP cloud types so that precipitation rate classified from low to high and Spearman rank correlation was calculated. The results showed good agreement between these two cloud type data; however, there were few notable difference between them.  相似文献   
5.
The vorticity analysis technique was applied to measure the different lithological units,such as schist,metagranite and metavolcano-sedimentary rocks,which are present in the Halaban region.This work aims to interpret the relationship between the different lithologies and the tectonic setting,in order to elucidate the nature of kinematic analysis in the Halaban region.The kinematic analyses were applied to feldspar porphyroclasts,quartz and hornblende for twentysix samples.The kinematic vorticity number (W_m) for deformed rocks in the study area ranged from~0.6 to 0.9.The direction of the long axes for finite strain data (X axes) revealed a WNW trend with shallow dipping.The direction of the short axes for finite strain data (Z axes) were represented by vertical with associated horizontal foliation.The results of the kinematic vorticity and strain analyses are characterized by simple shear with different degrees of deformation in the Halaban region.Furthermore,our finite strain data shows no significant volume change during deformation.The subhorizontal foliation was synchronized with thrusting and deformation.Furthermore,throughout the overlying nappes,the same attitudes of tectonic contacts are observable,the nappes in the orogens being formed from simple shear deformation.  相似文献   
6.
A simple theoretical model for soil–structure interaction in water saturated poroelastic soils is presented, developed to explore if the apparent building–foundation–soil system frequency changes due to water saturation. The model consists of a shear wall supported by a rigid circular foundation embedded in a homogenous, isotropic poroelastic half-space, fully saturated by a compressible and inviscid fluid, and excited by in-plane wave motion. The motion in the soil is governed by Biot's theory of wave propagation in fluid saturated porous media. Helmholtz decomposition and wave function expansion of the two P-wave and the S-wave potentials is used to represent the motion in the soil. The boundary conditions along the contact surface between the soil and the foundation are perfect bond (i.e. welded contact) for the skeleton, and either drained or undrained hydraulic condition for the fluid (i.e. pervious or impervious foundation). For the purpose of this exploratory analysis, the zero stress condition at the free surface is relaxed in the derivation of the foundation stiffness matrix, which enables a closed form solution. The implications of this assumption are discussed, based on published comparisons for the elastic case. Also, a closed form representation is derived for the foundation driving forces for incident plane (fast) P-wave or SV wave. Numerical results and comparison with the full-scale measurements are presented in the companion paper, published in this issue.  相似文献   
7.
In this paper, a simple two-dimensional soil–structure interaction model, based on Biot's theory of wave propagation in fluid saturated porous media, is used to explain the observed increase of the apparent frequencies of Millikan library in Pasadena, California, during heavy rainfall and recovery within days after the rain. These variations have been measured for small amplitude response (to microtremors and wind excitation), for which Biot's linear theory is valid. The postulated hypothesis is that the observed increases in frequency are due to the water saturation of the soil. The theoretical model used to explore this hypothesis consists of a shear wall supported by a circular foundation embedded in a poroelastic half-space. This rigid foundation model may be appropriate only for the NS response of Millikan library. This paper presents results for the foundation stiffness, and for the system response for model parameters similar to those for Millikan library (located on alluvium with shear wave velocity of about 300 m/s). The foundation impedance matrix, foundation input motion and system response are compared for dry and fully saturated half-space, with permeable and impermeable foundation. The results show that for embedded foundations, the effects of saturation on the horizontal foundation stiffness are as significant as for the vertical stiffness, contrary to what has been known for surface foundations investigated by other authors. Further, the results suggest a 1–2% increase in system frequency of the first two modes of vibration, depending on the drainage condition along the foundation–soil interface. Such increases agree qualitatively with the observations.  相似文献   
8.
A multiple attribute risk assessment approach using a fuzzy inference system is developed in this work. The approach is based on the use of fuzzy sets, a rule base and a fuzzy inference engine. Traditional input probabilities and consequences used in risk assessment are represented by fuzzy sets to take into account uncertainties associated with the assignment of their values. The output risk values can be presented as crisp values or fuzzy sets with associated degree of membership. The fuzzy inference system FIS is used as an alternative approach to qualitative risk matrix techniques currently used in many industries and by ship classification societies. Two approaches for fuzzy inference are adopted. These include the Mamdani approach in which output risk values are fuzzy sets and the Sugeno method of fuzzy inference, in which output risk values are constant or linear.The use of a fuzzy set approach is particularly suited for handling multiple attribute risk problems with imprecise data. It improves upon existing qualitative methods and allows the ranking of risk alternatives based on a unified fuzzy risk index measure. Results show that while the Mamdani method is intuitive and well suited to human input, the Sugeno method is computationally more efficient and guarantees continuity of the final risk output surface. Results also show that computed risk values using a fuzzy risk index measure are consistent with those obtained using a qualitative risk matrix approach. The proposed methodology is also applicable to other ship operating modes such as transit in open sea and/or entering/leaving port. A case study for a liquefied natural gas LNG ship loading/offloading at the terminal is presented to demonstrate the developed approach capability.  相似文献   
9.
One of the major strengths of a GIS is the ability to integrate and combine multiple layers of geoscience data for producing mineral potential maps showing favorable areas for mineral exploration. Once the data is prepared properly, the GIS, jointly with other statistical and geostatistical software packages, can be used to manipulate and visualize the data in order to produce a mineral prospectivity map. Many spatial modeling techniques can be employed to produce mineral potential maps. This paper demonstrates a technique to define favorable areas for REE mineralization with AHP technique using geological, geochemical, geophysical, alteration and faults density spatial data in the Kerman-Kashmar Tectonic Zone of central Iran. The AHP is a powerful and flexible multi-criteria decision-making tool for dealing with complex problems where both qualitative and quantitative aspects need to be considered. This approach is knowledgedriven method and can be applied in other areas for conventional use in mineral exploration.  相似文献   
10.
Takakura  Tatsuo  Yousef  Shahinaz 《Solar physics》1974,39(2):451-458
The harmonic ratios of a large sample of inverted-U bursts are found to be smaller at the turning frequency than at the starting frequency. Ratios <2.0 are explained by postulating that the lowest fundamental frequencies emitted are prevented from escaping from the corona by an evanescent region between the source and the observer. This concept is used to construct a source model for inverted-U bursts where the density is lower inside a magnetic flux tube than it is outside.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号