首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
测绘学   7篇
综合类   2篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  1957年   1篇
排序方式: 共有9条查询结果,搜索用时 390 毫秒
1
1.
潮位是保证沿海安全、监测海洋气候、维持高程基准的重要参数。近年来基于地基Global Navigation Satellite Systems (GNSS)反射信号的遥感方法被证实可以用于潮位监测。相较于传统的潮位测量方法,GNSSmultipath reflectometry (GNSS-MR)技术有成本低、连续跟踪、全天候等优势;但是目前技术的精度不高、时间分辨率较低。通过获取更多GNSS卫星系统的观测数据可以提高潮位监测结果的时间分辨率,本文利用GPS、GLONASS、Galileo和BeiDou的观测数据,采用基于IGGIII模型的稳健回归方法对四系统的潮位反演数据进行融合研究。测站选取BRST站和HKQT站,这两个测站均可接收四系统数据;实验结果表明,利用多模多频GNSSMR进行潮位反演,二个测站的反演精度分别优于13 cm和8 cm,相比于单系统单频精度有40%—70%的提升,而且能够大大提高时间分辨率。  相似文献   
2.
全球卫星导航系统反射测量(GNSS-R)技术中,观测几何计算不仅涉及GNSS反射信号的在轨实时处理,而且与观测值的地理位置计算直接相关,对其进行精确计算十分重要。当前GNSS-R技术逐步向陆地场景拓展,已有几何计算方法难以满足多场景(海洋、陆地、冰川等)应用的需求。针对此,本文提出了一种顾及地球曲率和椭球高的几何计算方法。该方法同时也集成了一种镜面点初始估计模型,在不同轨道高度(300~900 km)和观测几何条件下,初始估计误差精度可降低至5 km以内。本文方法可基于WGS-84椭球面和顾及反射面椭球高精确计算镜面反射点,精度可控在1 mm以内,计算效率相比已有方法有显著提升,可对未来考虑地形高度的高效计算需求提供借鉴。本文方法通过变换迭代方程可进行反射信号的几何路径计算,实现从反射信号延迟观测到镜面反射点和椭球高的一体解算。与已有方法相比,本文方法考虑了地球曲率及反射点随椭球高度变化的空间偏移误差,可避免测高应用中测量值定位不准确的问题。  相似文献   
3.
针对海量点云数据存在大量冗余问题,该文提出基于K-近邻长方体的点云压缩算法。利用目标点的K近邻在非特征点云与特征点云之间的不同分布特性,基于该文算法将点云集合分为特征及非特征点集。该方法先对目标点近邻点进行坐标转换并构建K-近邻长方体,建立压缩准则,对长方体进行扁平程度筛选,结合分段采样去除大量冗余点及少量密集特征点,实现保留原始特征的点云压缩。该文方法涉及K、α、采样率β_(all)3个参数,在实验分析中,采用体积偏差、表面积偏差和Hausdorff距离对该文方法涉及的3个参数进行精度影响分析,结果表明,该方法能保留大量原始特征,在最优K值条件下β_(all)为0.4,α为0.9,此时体积偏差百分比为0.27%,表面积偏差百分比为0.5%,具有较高的压缩精度。  相似文献   
4.
王笑蕾  何秀凤  陈殊  张勤  宋敏峰 《测绘学报》2021,50(10):1298-1307
随着全球导航卫星系统(Global Navigation Satellite Systems,GNSS)的发展,曾经被认为是误差源的多路径效应,已经被证实可以用来监测水位、雪深、植被指数、土壤湿度等反射面参数,其中的地基分支逐步发展为GNSS干涉遥感(GNSS-interferometry refl ectometry,GNSS-IR)技术.为了扩展GNSS-IR技术的监测对象和应用范围,本文提出了一套地基GNSS-IR风速反演的原理及方法.首先,本文基于信噪比(signal-to-noise ratio,SNR)振荡原理、散射模型原理、波浪谱原理,从理论上证明了SNR截止高度角参数与风速之间存在一一对应的数学关系,并仿真得到了具体的数学关系.然后,本文使用小波分析方法从实测SNR序列中获取SNR截止高度角,并将同一GPS卫星、每天同一时间内SNR序列的截止高度角进行基准统一,获得截止高度角变化量;根据该变化量反演风速.算例选取香港HKQT站在"山竹"和"天鸽"台风前后时间的数据进行分析,结果发现:GPS L5信号的截止高度角变化量与实测风速数据对应关系良好,相关性达到70% ~85%;截止高度角变化量可以刻画风速从低风速逐步抬升至高风速的变化情况;同一站点截止高度角变化量与风速之间存在特定的数学关系;相关结论证实了利用SNR可以估计风速变化.最后,本文讨论了GNSS-IR风速反演技术中下一步的研究方向,以期推进该技术的实际应用进程.  相似文献   
5.
利用多模多频GNSS-IR信号反演沿海台风风暴潮   总被引:2,自引:0,他引:2  
何秀凤  王杰  王笑蕾  宋敏峰 《测绘学报》1957,49(9):1168-1178
台风风暴潮每年给沿海城市造成了极大的损失,近年来利用GNSS反射信号的地基遥感方法可以用于潮位监测,称为GNSS-IR(global navigation satellite system-interferometric reflectometry),对风暴潮期间验潮站资料进行补充。由于风暴潮发生时间短且破坏性强,单系统GPS的时间分辨率难以满足海洋灾害的监测需求。本文基于中国香港站(HKQT)和巴哈马群岛站(BHMA)的多模多频GNSS卫星观测数据反演了3次沿海风暴潮事件。先对多模多频数据的质量进行分析,随后分别对2019年飓风“多里安”、2018年台风“山竹”和2017年台风“天鸽”引起的3次风暴潮,利用基于滑动窗口的最小二乘法对多模多频GNSS-IR反演结果进行改正并与验潮站实测值对比分析。试验结果表明,利用多模多频GNSS-IR反演“多里安”风暴潮的精度优于14 cm,反演“天鸽”和“山竹”风暴潮的精度优于9 cm。相比GPS单系统,多模多频GNSS-IR能够提高监测的精度和时间分辨率,有效提取风暴潮中异常潮位的涨潮、峰值和落潮的全过程,对海洋灾害的研究监测发挥重要作用。  相似文献   
6.
从测站环境和监测要求2个方面分析经典改正法和最小二乘改正法在海潮监测中的适用性。结果表明,2种方法均能改正误差,提高反演精度,且具有不同的适用性。经典改正法在正常气象情况下改正效果较好且基本不改变结果的时间分辨率,而最小二乘法更适用于风暴潮或海啸等特殊情况。当监测有效方位角较小的海域时,2种方法改正效果均会降低,且经典改正法受影响更大。  相似文献   
7.
潮位监测对于保障沿海安全、海洋监测与分析非常重要。随着GNSS的发展,一种GNSS干涉遥感(GNSS-IR)的技术被证明可以进行潮位监测。该方法通过反演反射表面与天线之间的垂直距离(RH)来估算潮位。在GNSS-IR潮位反演中,有一项重要的误差源需要进行改正——潮位起伏引起的高度变化误差。现有的误差改正方法并不能正确计算RH变化速率,从而不能完全改正该误差。因此,提出了一种顾及潮波特性的GNSS-IR融合方法,基于潮波系数,预测窗口内观测时间的RH变化速率,将该值纳入GNSS-IR融合方程中,实现对高度变化误差更好地改正。本文利用3个国际GNSS站点进行试验,与实测潮位序列对比分析,发现顾及潮波特性后,GNSS-IR融合方法精度提高约1.2 cm;提出的顾及潮波特性的GNSS-IR融合反演算法较传统经典方法,精度提升20%~70%。结果表明,该方法通过潮汐分析,预测不同时刻的RH变化速率,从而实现对窗口内RH变化速率的修正,更好地改正高度变化误差。  相似文献   
8.
基于小波分析方法,利用GPS、GLONASS、Galileo和Beidou观测数据,通过对不同类型的信噪比数据进行质量分析,筛选质量较好的数据提取瞬时潮位.实验结果表明,基于小波分析的多模多频GNSS-MR潮位反演可大幅提升潮位反演结果的时间分辨率,且精度与LSP方法相当,可达到dm级.  相似文献   
9.
准确的水位监测对于水资源调控、水灾监控及气候气象研究十分重要。近年来,随着全球导航卫星系统的不断发展,一种GNSS干涉遥感水位反演技术被提出。目前,GNSS-IR水位反演中主要有3类误差:高度变化误差、高度角弯曲误差和对流层延迟误差,相关的改正方法也被陆续提出。本文研究了4个GNSS跟踪站(HKQT、SW50、SW51和SW52)的多模多频反演结果,发现除了已经发现的3类误差外,还存在一种明显的频间偏差。现有研究对于GNSS-IR频间偏差的研究很少,尚未达成将其归为GNSS-IR误差源的共识。为了进一步挖掘频间偏差的特性、加深对该误差的认识,本文计算了不同信号的有效高度(reflector height,RH),发现不同频率信号的RH反演值间存在差距;将该差距与波长进行对比分析,发现该差距与信号波长存在显著的线性关系(相关系数>95%)。该偏差量级在分米级,表现出了明显的频间偏差系统特性。针对发现的频间偏差及其相关特性,本文提出了相关的误差改正方法,结果表明:顾及频间偏差的改正结果比未顾及频间偏差的反演结果的均方根误差高1.5~12 cm。同时,改正后的融合反演值的精度较未改正的独立信号的反演值提高了30%~80%;精度的提高得益于多模多频信号提供的大量冗余数据以及对各类误差(包括系统误差、粗差和随机误差)的正确处理。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号