首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7571篇
  免费   1291篇
  国内免费   1056篇
测绘学   697篇
大气科学   966篇
地球物理   2426篇
地质学   3754篇
海洋学   724篇
天文学   358篇
综合类   414篇
自然地理   579篇
  2024年   16篇
  2023年   61篇
  2022年   188篇
  2021年   204篇
  2020年   160篇
  2019年   214篇
  2018年   583篇
  2017年   543篇
  2016年   403篇
  2015年   351篇
  2014年   284篇
  2013年   353篇
  2012年   893篇
  2011年   654篇
  2010年   333篇
  2009年   345篇
  2008年   286篇
  2007年   300篇
  2006年   340篇
  2005年   972篇
  2004年   986篇
  2003年   736篇
  2002年   267篇
  2001年   156篇
  2000年   82篇
  1999年   49篇
  1998年   9篇
  1997年   23篇
  1996年   13篇
  1995年   7篇
  1994年   4篇
  1992年   3篇
  1991年   10篇
  1990年   11篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1980年   3篇
  1976年   3篇
  1975年   4篇
  1965年   3篇
  1963年   3篇
  1957年   2篇
  1955年   2篇
  1954年   5篇
  1951年   2篇
  1948年   2篇
排序方式: 共有9918条查询结果,搜索用时 31 毫秒
991.
Neoproterozoic tectonics is dominated by the amalgamation of the supercontinent Rodinia at ca. 1.0 Ga, its breakup at ca. 0.75 Ga, and the collision between East and West Gondwana between 0.6 and 0.5 Ga. The principal stages in this evolution are recorded by terranes along the northern margin of West Gondwana (Amazonia and West Africa), which continuously faced open oceans during the Neoproterozoic. Two types of these so-called peri-Gondwanan terranes were distributed along this margin in the late Neoproterozoic: (1) Avalonian-type terranes (e.g. West Avalonia, East Avalonia, Carolina, Moravia-Silesia, Oaxaquia, Chortis block that originated from ca. 1.3 to 1.0 Ga juvenile crust within the Panthalassa-type ocean surrounding Rodinia and were accreted to the northern Gondwanan margin by 650 Ma, and (2) Cadomian-type terranes (North Armorica, Saxo-Thuringia, Moldanubia, and fringing terranes South Armorica, Ossa Morena and Tepla-Barrandian) formed along the West African margin by recycling ancient (2–3 Ga) West African crust. Subsequently detached from Gondwana, these terranes are now located within the Appalachian, Caledonide and Variscan orogens of North America and western Europe. Inferred relationships between these peri-Gondwanan terranes and the northern Gondwanan margin can be compared with paleomagnetically constrained movements interpreted for the Amazonian and West African cratons for the interval ca. 800–500 Ma. Since Amazonia is paleomagnetically unconstrained during this interval, in most tectonic syntheses its location is inferred from an interpreted connection with Laurentia. Hence, such an analysis has implications for Laurentia-Gondwana connections and for high latitude versus low latitude models for Laurentia in the interval ca. 615–570 Ma. In the high latitude model, Laurentia-Amazonia would have drifted rapidly south during this interval, and subduction along its leading edge would provide a geodynamic explanation for the voluminous magmatism evident in Neoproterozoic terranes, in a manner analogous to the Mesozoic-Cenozoic westward drift of North America and South America and subduction-related magmatism along the eastern margin of the Pacific ocean. On the other hand, if Laurentia-Amazonia remained at low latitudes during this interval, the most likely explanation for late Neoproterozoic peri-Gondwanan magmatism is the re-establishment of subduction zones following terrane accretion at ca. 650 Ma. Available paleomagnetic data for both West and East Avalonia show systematically lower paleolatitudes than predicted by these analyses, implying that more paleomagnetic data are required to document the movement histories of Laurentia, West Gondwana and the peri-Gondwanan terranes, and test the connections between them.  相似文献   
992.
U-Pb SHRIMP dating of zircons of metamagmatites from the Bayerischer Wald (Germany) reveals a complex evolution of this section of the Moldanubian Zone exposed in the western Bohemian Massif of the central European Variscan belt. In the south-western part of the Bayerischer Wald Upper Vendian magmatism is constrained by pooled 206Pb/238U mean ages of 555±12, 549±7 and 549±6 Ma from metarhyolites and a metabasite. Inherited zircon cores were not observed. Zircon overgrowths, yielding pooled 206Pb/238U ages of 316±10 and 319±5 Ma, provide evidence for Variscan metamorphic zircon growth; cathodoluminescence imaging reveals a two-stage metamorphic overprint.In contrast, Lower Ordovician magmatism and anatexis are documented in the north-eastern parts of the Bayerischer Wald by metagranitoids (480±6, 486±7 Ma), an eclogitic metabasite (481±8 Ma) and a leucosome (491 to 457 Ma). Inherited zircon cores are found in Lower Ordovician metagranitoids and the leucosome, indicating a Palaeoproterozoic-Archaean (ca. 2.7, 2.0 Ga) source region, presumably of Gondwana affinity (West African craton), and documenting Cadomian magmatism (ca. 640 Ma). Post-Cadomian metamorphism is inferred from concordant ages of 433±4 and 431±7 Ma.Upper Vendian magmatism is assumed at an active continental margin with ensialic back-arc development (εNd(t) –3.01 to +1.22); the lack of inherited zircon is due to either derivation from juvenile (?volcanic arc) material or complete isotopic resetting of pre-existing zircon. An active continental margin setting, possibly with some lateral variation (accretion/collision) is envisaged for the Lower Ordovician, producing granitoids, rhyolites and leucosomes (εNd(t) -0.5 to -6.27); MORB-type metabasites may be related to ZEV or Mariánské Lázně Complex metabasites. A tentative palaeogeographic reconstruction puts the “Bayerischer Wald” in close relationship with the Habach terrane (proto-Alps), as the “eastern” extension of terranes of the northern Gondwana margin.  相似文献   
993.
Using both the photosynthetically active chlorophylla (chla) content of the organic carbon fraction of suspended particulate matter (chla/POC) and the percentage of photosynthetically, active chla in fluorometrically measured chla plus pheophytina (% chla), we determined that under specified hydrodynamic conditions, neap-spring tidal differentiation in particle dynamics could be observed in the Columbia River estuary. During summer time neap tides, when river discharge was moderate, bottom chla/POC remained relatively unchanged from riverine chla/POC over the full 0–30 psu salinity range, suggesting a benign trapping environment. During summertime spring tides, bottom chla/POC decreased at mid range salinities indicating resuspension of chla-poor POC during flood-ebb transitions. Bottom % chla during neap tides tended to average higher than that during spring tides, suggesting that neap particles were more recently hydrodynamically trapped than those on the spring tides. Such differentiation supported the possibility of operation of a particle conveyor belt process, a process in which low-amplitude neap tides favor selective particle trapping in estuarine turbidity maxima (ETM)., while high-amplitude spring tides favor particle resuspension from the ETM. Untrapped river-derived particles at the surface would continue through the estuary to the coastal ocean on the neap tide; during spring tide some particles eroded from the ETM would combine with unsettled riverine particles in transit toward the ocean. Because in tensified biogeochemical activity is associated with ETM, these neap-spring differences may be critical to maintenance and renewal of populations and processes in the estuary. Very high river discharge (15, 000 m3 s−1) tended to overwhelm neap-spring differences, and significant oceanic input during very low river discharge (5,000 m3 s−1) tended to do the same in the estuarine channel most exposed to ocean input. During heavy springtime phytoplankton blooms, development of a thick bottom fluff layer rich in chla also appeared to negate neapspring differentiation because spring tides apparently acted to resuspend the same rich bottom material that was laid down during neap tides. When photosynthetic assimilation numbers [μgC (μgchl,a)−1h−1] were measured across, the full salinity range, no neap-spring differences and no river discharge effects occurred, indicating that within our suite of measurements the compositional distinction of suspended particulate material was mainly a function of chla/POC, and to a lesser extent % chla. Even though these measurements suggest the existence of a conveyor belt process, proof of actual operation of this phenomenon requires scalar flux measurements of chla properties in and out of the ETM on both neap and spring tides.  相似文献   
994.
Isolated patches ofSpartina anglica (cordgrass) at two sites on a wave-exposed mid-intertidal flat of the 340 km2 Manukau Harbor (Auckland, New Zealand) have developed very differently since being planted in the mid-1970s. Although the two sites are only 0.5 km apart and at the same intertidal elevation,Spartina patches at the easternmost site (site 1) have as much as an order of magnitude higher biomass and accumulated sediment volume thanSpartina patches at site 2. A field experiment was conducted to characterize waves and associated sediment dynamics at each site, which might explain whySpartina patches at the two sites have developed so differently over the past 25 yr or so. Suspended sediments were measured and wave characteristics were inferred from subsurface pressure data measured for 5 wk at bothSpartina sites and at an intermediate location. Bed-orbital speeds and frictional wave-energy dissipation were consistently lower at the easternmost site with the largerSpartina patches. The west-to-east reduction in wave energy is due to the spatial arrangement of theSpartina sites relative to the predominant wind fetches. The wave-energy gradient is maintained by tidal-cycle variations in fetch and bed friction and results in a west-to-east reduction in sand suspension. Silt, which is largely resuspended under southwest winds, is redeposited in the low wave-energy conditions in and around the larger site 1Spartina patches. Shell accumulation bySpartina patches at site 1 occurs infrequently, during southwest winds >10 m s−1 and water depths >0.7 m, when waves are least attenuated by bed friction. Large between-site differences in the growth of and sediment accumulation by theSpartina patch are consistent with the observed wave-energy gradient. The resulting spatial patterns of silt, sand, and shell resuspension and deposition directly influence the rate of sediment accumulation bySpartina patches and the composition of accumulated sediment on this wave-exposed intertidal flat.  相似文献   
995.
We assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore, and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assemblage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets) and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods: 1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples), most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant in past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblage and Gulf menhaden (Brevoortia patromus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach seine data also indicated a decrease in the dominance ofM. undulatus and an increase in the proportion ofA. mitchilli over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple anthropogenic stressors than nearshore or pelagic habitats.  相似文献   
996.
In the southern part of the French Armorican massif, the Ligerian domain is located along the boundary between Gondwana and Armorica. Lithological, geochemical and structural data on the Saint-Georges-sur-Loire Unit, which is the northern part of the Ligerian domain, allow us to distinguish two sub-units. A southern sub-unit, formed by various blocks (chert, limestone, sandstone, rhyolite, mafic rocks) of Silurian to Middle Devonian age included as olistoliths in a Middle-Late Devonian terrigeneous matrix, overthrusts a sandstone-pelite northern sub-unit. Both units experienced two deformation events. The first one is a top-to-the-NW thrusting and the second one is a left-lateral wrenching. The Saint-Georges-sur-Loire Unit is an accretionary prism formed during the Late Devonian closure of the Layon rift, coeval with the main phase of the Variscan orogeny. The Layon rift, which according to the mafic olistoliths was partly floored by oceanic crust, appears as a buffer structural zone that accounts for the lack in Central Brittany of any tectonic or sedimentary echo of the closure of the Medio-European Ocean. The tectonic evolution of the Saint-Georges-sur-Loire Unit supports a polyorogenic model for this part of the Variscan Belt.  相似文献   
997.
In the Pulur complex (Sakarya Zone, Eastern Pontides, Turkey) a low-grade tectonometamorphic unit (Doankavak) is exposed in three tectonic windows beneath a complex medium-pressure high-temperature metamorphic unit of late Carboniferous age. The thrust plane between both units is transgressively covered by Liassic conglomerates. The Doankavak unit comprises a sequence of metabasites with MORB-type chemical compositions and phyllites, with subordinate calcareous phyllites, marbles, quarzofeldspathic schists and metacherts. This sequence is interpreted as a former accretionary complex related to the consumption of the Palaeotethys. Mineral parageneses in the metabasites allow for the distinction of two domains with slightly different peak metamorphic conditions, i.e. 375–425 °C/0.5–0.8 GPa (greenschist facies) and 400–470 °C/0.6–1.1 GPa (albite-epidote amphibolite facies). The age of metamorphism is constrained at ~ 260 Ma (early Late Permian) by two Rb-Sr mineral-whole rock ages (hornblende, phengite) and one 40Ar/39Ar single step total fusion age (phengite). In conjunction with previous data on other accretionary complexes in the Sakarya zone in Northern Turkey, the data presented in this study suggest a continuous subduction of the Palaeotethys at least from Early/Late Permian to Late Triassic and a discontinuous preservation of accretion complexes in both space and time.  相似文献   
998.
The Kodzko Metamorphic Complex (KMC) in the Central Sudetes consists of meta-sedimentary and meta-igneous rocks metamorphosed under greenschist to amphibolite facies conditions. They are comprised in a number of separate tectonic units interpreted as thrust sheets. In contrast to other Lower Palaeozoic volcano-sedimentary successions in the Sudetes, the two uppermost units (the Orla-Googowy unit and the Kodzko Fortress unit) of the KMC contain meta-igneous rocks with supra-subduction zone affinities. The age of the KMC was previously assumed to be Early Palaeozoic–Devonian, based on biostratigraphic findings in the lowermost tectonic unit. Our geochronological study focused on the magmatic rocks from the two uppermost tectonic units, exposed in the SW part of the KMC. Two orthogneiss samples from the Orla-Googowy unit yielded ages of 500.4±3.1 and 500.2±4.9 Ma, interpreted to indicate the crystallization age of the granitic precursors. A plagioclase gneiss from the same tectonic unit, intimately interlayered with metagabbro, provided an upper intercept age of 590.1±7.2 Ma, which is interpreted as the time of igneous crystallization. From the topmost Kodzko Fortress unit, a metatuffite was studied, which contains a mixture of genetically different zircon grains. The youngest 207Pb/206Pb ages, which cluster at ca. 590-600 Ma, are interpreted to indicate the maximum depositional age for this metasediment. The results of this study are in accord with a model that suggests a nappe structure for the KMC, with a Middle Devonian succession at the base and Upper Proterozoic units at structurally higher levels. It is suggested here that the KMC represents a composite tectonic suture that juxtaposes elements of pre-Variscan basement, intruded by the Lower Ordovician granite, against a Middle Palaeozoic passive margin succession. The new ages, combined with the overall geochemical variation in the KMC, indicate the existence of rock assemblages representing a Gondwana active margin. The recognition of Neoproterozoic subduction-related magmatism provides additional arguments for the hypothesis that equivalents of the Teplá-Barrandian domain are exposed in the Central Sudetes.  相似文献   
999.
An integrated approach of petrographic analysis, whole rock geochemistry and microprobe analysis has been applied to obtain information on the geodynamic development and the provenance for Ordovician to Permian siliciclastic successions exposed within the Carnic Alps (Austria). Sandstone detrital mode and geochemical results refine previous geodynamic interpretations. Late Ordovician samples indicate a stable craton and recycled orogenic and, possible, extensional setting. The Early Carboniferous is interpreted to represent a compressional environment, followed by a Late Carboniferous molasse-type foreland basin, and a Permian extensional geodynamic setting. Contrasting geochemical patterns of post-Variscan and Permian sequences suggest a rift setting. Electron microprobe data of detrital white mica also indicate changes in the provenance. Compositional data reflect a shift from low- to medium-grade metamorphic (Ordovician) to high-grade metamorphic (Carboniferous) to low- to medium-grade metamorphic and plutonic source rocks (Permian). Additionally, our data show that various chemical discrimination diagrams do not include all possible ranges of sandstones, and that high contents of detrital mica and ultra-stable heavy minerals may cause misclassification. Consequently, we propose the use of multi-method approach for provenance studies, including the control of geochemical data by modal analysis and heavy mineral investigations.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号