首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1609篇
  免费   43篇
  国内免费   20篇
测绘学   52篇
大气科学   94篇
地球物理   344篇
地质学   567篇
海洋学   107篇
天文学   339篇
综合类   16篇
自然地理   153篇
  2022年   8篇
  2021年   8篇
  2020年   23篇
  2019年   20篇
  2018年   31篇
  2017年   23篇
  2016年   31篇
  2015年   25篇
  2014年   37篇
  2013年   72篇
  2012年   49篇
  2011年   68篇
  2010年   87篇
  2009年   91篇
  2008年   78篇
  2007年   63篇
  2006年   58篇
  2005年   57篇
  2004年   50篇
  2003年   63篇
  2002年   52篇
  2001年   27篇
  2000年   39篇
  1999年   25篇
  1998年   20篇
  1997年   22篇
  1996年   19篇
  1995年   22篇
  1994年   27篇
  1993年   23篇
  1992年   22篇
  1990年   21篇
  1989年   23篇
  1988年   24篇
  1987年   21篇
  1986年   19篇
  1985年   32篇
  1984年   31篇
  1983年   27篇
  1982年   22篇
  1981年   35篇
  1980年   24篇
  1979年   16篇
  1978年   15篇
  1977年   20篇
  1976年   14篇
  1975年   11篇
  1974年   19篇
  1973年   16篇
  1971年   8篇
排序方式: 共有1672条查询结果,搜索用时 156 毫秒
61.
A family of wall models is proposed that exhibits moresatisfactory performance than previousmodels for the large-eddy simulation (LES) of the turbulentboundary layer over a rough surface.The time and horizontally averaged statistics such asmean vertical profiles of windvelocity, Reynolds stress, turbulent intensities, turbulentkinetic energy and alsospectra are compared with wind-tunnel experimental data.The purpose of the present study is to obtain simulatedturbulent flows that are comparable with wind-tunnelmeasurements for use as the wind environment for thenumerical prediction by LES of source dispersion in theneutral atmospheric boundary layer.  相似文献   
62.
The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.  相似文献   
63.
We consider the response of a deep unconfined horizontal aquifer to steady, annual, and monthly recharge. A groundwater divide and a zero head reservoir constrain the aquifer, so that sinusoidal monthly and aperiodic annual recharge fluctuations create transient specific discharge near the reservoir and an unsteady water table elevation inland. One existing and two new long-term data sets from the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate and confirm hydraulic properties in a set of analytical models. [Geohydrology and simulated groundwater flow, 1992] data and a new power law for tritiugenic helium to tritium ratios calibrate the steady recharge that drives the classical parabolic model of steady hydraulics [Applied Hydrogeology, 2001]. Observed water table and gradient fluctuations calibrate the transient recharge models. In the latter regard, monitoring wells within 1 km of Buttermilk Bay exhibit appreciable specific discharge and reduced water table fluctuations. We apply [Trans Am Geophys Union 32(1951)238] periodic model to the monthly hydraulics and a recharge convolution integral [J Hydrol 126(1991)315] to annual flow. An infiltration fraction of 0.79 and a consumptive use coefficient of 1.08×10−8 m/s °C relate recharge to precipitation and daylight weighted temperature across all three time scales. Errors associated with this recharge relation decrease with increasing time scale.  相似文献   
64.
Redshift surveys     
Recent results and current plans for redshift surveys were the subject of an RAS discussion meeting on 10 October 2003, organized by Ofer Lahav and Jon Loveday. Sarah Bridle and Alan Heavens report.  相似文献   
65.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   
66.
This study explores the fractionation of iron isotopes (57Fe/54Fe) in an organic-rich mudstone succession, focusing on core and outcrop material sampled from the Upper Jurassic Kimmeridge Clay Formation type locality in south Dorset, UK. The organic-rich environments recorded by the succession provide an excellent setting for an investigation of the mechanisms by which iron isotopes are partitioned among mineral phases during biogeochemical sedimentary processes.Two main types of iron-bearing assemblage are defined in the core material: mudstones with calcite ± pyrite ± siderite mineralogy, and ferroan dolomite (dolostone) bands. A cyclic data distribution is apparent, which reflects variations in isotopic composition from a lower range of δ57Fe values associated with the pyrite/siderite mudstone samples to the generally higher values of the adjacent dolostone samples. Most pyrite/siderite mudstones vary between −0.4 and 0.1‰ while dolostones range between −0.1 and 0.5‰, although in very organic-rich shale samples below 360 m core depth higher δ57Fe values are noted. Pyrite nodules and pyritized ammonites from the type exposure yield δ57Fe values of −0.3 to −0.45‰. A fractionation model consistent with the δ57Fe variations relates the lower δ57Fe pyrite and siderite ± pyrite mudstones values to the production of isotopically depleted Fe(II) during biogenic reduction of the isotopically heavier lithogenic Fe(III) oxides. A consequence of this reductive dissolution is that a 57Fe-enriched iron species must be produced that potentially becomes available for the formation of the higher δ57Fe dolostones. An isotopic profile across a dolostone band reveals distinct zonal variations in δ57Fe, characterized by two peaks, respectively located above and below the central part of the band, and decoupling of the isotopic composition from the iron content. This form of isotopic zoning is shown to be consistent with a one-dimensional model of diffusional-chromatographic Fe-isotope exchange between dolomite and isotopically enriched pore water. An alternative mechanism envisages the infiltration of dissolved ferrous iron from variable (high and low) δ57Fe sources during coprecipitation of Fe(II) ion with dolomite. The study provides clear evidence that iron isotopes are cycled during the formation and diagenesis of organic carbon-rich sediments.  相似文献   
67.
We report 26Mg excesses correlated with Al/Mg ratios in five chondrules from the primitive CO3.0 chondrite Yamato 81020 that yield a mean initial 26Al/27Al ratio of only (3.8 ± 0.7) × 10−6, about half that of ordinary chondrite (OC) chondrules. Even if asteroids formed immediately after chondrule formation, this ratio and the mean Al content of CO chondrites is only capable of raising the temperature of a well-insulated CO asteroid to 940 K, which is more than 560 K too low to produce differentiation. The same ratio combined with the higher Al content of CV chondrites results in a CV asteroid temperature of 1100 K. We calculate that the mean initial 26Al/27Al ratio of about 7.4 × 10−6 found in LL chondrules is only able to produce small amounts of melting, too little to produce differentiation. These results cast serious doubt on the viability of 26Al as the heat source responsible for asteroid differentiation. Inclusion of 60Fe raises temperatures about 160 K, but this increment is not enough to cause differentiation, even of an LL-chondrite asteroid.  相似文献   
68.
CSA mine exploits a ‘Cobar-type’ Cu–Pb–Zn±Au±Ag deposit within a cleaved and metamorphosed portion of the Cobar Supergroup, central New South Wales. The deposit comprises systems of ‘lenses’ that encompass veins, disseminations and semi-massive to massive Cu–Pb–Zn ores. The systems and contained lenses truncate bedding, are approximately coplanar with regional cleavage and similarly oriented shear zones and plunge parallel to the elongation lineation. Systems have extreme vertical continuity (>1000 m), short strike length (400 m) and narrow width (100 m), exhibit vertical and lateral ore-type variation and have alteration haloes. Models of ore formation include classical hydrothermalism, structurally controlled remobilisation and polymodal concepts; syntectonic emplacement now holds sway.Fluid inclusions were examined from quartz±sulphide veins adjacent to now-extracted ore, from coexisting quartz–sulphide within ore, and from vughs in barren quartz veins. Lack of early primary inclusions precluded direct determination of fluids associated with D2–D3 ore and vein emplacement. Similarly, decrepitation (by near-isobaric heating) of the two oldest secondary populations precluded direct determination of fluid phases immediately following D2–D3 ore and vein emplacement. Post-decrepitation outflow (late D3 to early post-D3) is recorded by monophase CH4 inclusions. Entrained outflow of deeply circulated meteoric fluid modified the CH4 system; modification is recorded by H2O+CH4 and H2O+(trace CH4) secondary populations and by an H2O+(trace CH4) primary population. The contractional tectonics (D2–D3) of ore emplacement was superseded by relaxational tectonics (D4P) that facilitated meteoric water penetration and return flow.Under D2 prograde metamorphism, entrapment temperatures (Tt) and pressures (Pt) for pre-decrepitation secondary inclusions are estimated as Tt300–330 °C and Pt1.5–2 kbar≈Plith (the lithostatic pressure). Decrepitation accompanied peak metamorphism (T350–380 °C) in mid- to late-D3, while in late-D3 to early post-D3, essentially monophase CH4 secondary inclusions were entrapped at Tt350 °C and Pt=1.5–2 kbar≈Plith. Subsequently, abundant CH4 and entrained meteoric water were entrapped as H2O+CH4 secondaries under slowly decreasing temperature (Tt330–350 °C) and constant pressure (Pt1.5–2 kbar). Finally, with increasingly dominant meteoric outflow, H2O+(trace CH4) populations record decreasing temperatures (Tt>300 to <350 down to 275–300 °C) at pressures of Phydrostatic<Pt (1 kbar) <Plith (1.5 kbar).The populations of inclusions provide insight into fluid types, flow regimes and P–T conditions during parts of the deposit's evolution. They indirectly support the role of basin-derived CH4 fluids in ore formation, but provide no insight into a basement-sourced ore-forming fluid. They fully support post-ore involvement of meteoric water. The poorly constrained entrapment history is believed to span 10 Ma from 395 to 385 Ma.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号