首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   5篇
  国内免费   9篇
地球物理   2篇
地质学   20篇
海洋学   2篇
  2021年   2篇
  2020年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2011年   3篇
  2007年   1篇
  2006年   8篇
  2005年   3篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
中国高含硫化氢天然气成因初探   总被引:1,自引:0,他引:1  
高含硫化氢天然气主要分布在四川盆地川东北地区三叠系飞仙关组渡口河、罗家寨、普光、铁山坡等飞仙关组气藏(T1f)和渤海湾盆地冀中坳陷晋县凹陷东北部孔店组孔一段-沙河街组沙四段(Ek^1-Es^4)气藏中。硫化氢含量分布在40%~92%,属世界上硫化氢含量最高气藏之一。笔者通过对这两个地区70余口取心井的5000m岩心观察和取样测试分析,特别是对石膏、硫磺、黄铁矿和天然气的硫同位素分析,以及油、气地球化学的综合研究,认为这两个地区高含硫化氢天然气均属硫酸盐热化学还原反应(TSR)成因,  相似文献   
12.
四川盆地普光大型气田的发现刷新了中国海相碳酸盐岩油气田的多项记录:储量规模最大、储层埋藏最深、资源丰度最高,同时也是中国原油裂解气藏规模最大、天然气最于、硫化氢储量最多的气藏;另外它还是中国目前发现的碳酸盐岩储层次生孔隙最发育的气藏。深入研究后发现,普光超大型气藏的形成具有特殊的地质地球化学条件,即充沛的烃源、储层附近发育一定的膏质岩类、储层经历过较大的埋深〈较高的温度),这些条件是硫酸盐热化学还原作用(thermochemical sulfate reduction,简称TSR,)发生所必须具备的;而正是由于TSR的发生,一方面形成了富含H2S、CO2等酸性气体的流体;同时TSR过程及其形成的硫化氢等酸性流体具有腐蚀性,对深部碳酸盐岩储层进行强烈的溶蚀改造作用,促进了次生大孔洞的发育和优质储层的形成,因此TSR的发生是普光大型气田形成的关键因素之一。  相似文献   
13.
以板块学说为理论基础,利用IHS能源信息库,在对澳大利亚西北大陆架被动大陆边缘盆地群原型盆地及古地理恢复基础上,从研究区20个大气田分布特征入手,剖析了其天然气富集的主控因素.认为晚石炭世—侏罗纪多期裂谷盆地控制了烃源岩的时空分布范围,其间大型海退型三角洲环境不仅带来了大量陆生腐植型有机质,而且提供了物性良好的储集砂体...  相似文献   
14.
俄罗斯主要含油气盆地油气成藏组合及资源潜力   总被引:1,自引:0,他引:1       下载免费PDF全文
俄罗斯油气纵向分布地层跨度大,总体上可分为前寒武系—下古生界、上古生界、中生界和新生界四大套含油气层系。通过已发现油气藏统计分析,前寒武系—下古生界油气藏主要分布于东西伯利亚克拉通盆地;上古生界油气藏主要分布于伏尔加—乌拉尔和蒂曼—伯朝拉前陆盆地;中生界油气藏分布比较广泛,主要分布于西西伯利亚裂谷盆地和东巴伦支海裂谷盆地,北高加索前陆和东西伯利亚克拉通边缘坳陷也有分布;新生界油气藏主要分布于俄罗斯远东以北萨哈林为代表的弧后盆地群内。文中以含油气系统研究为基础,以成藏组合为评价单元,通过对上述主要含油气盆地油气关键成藏要素分析,应用油气藏发现过程法,对盆地的待发现资源量进行了估算。估算结果显示在现有经济技术条件下,俄罗斯地区待发现油气资源依旧丰富,待发现石油资源量主要赋存于西西伯利亚盆地,待发现天然气资源量主要在西西伯利亚盆地、东西伯利亚盆地和东巴伦支海盆地。  相似文献   
15.
TSR(硫酸盐热化学还原反应)是高含硫化氢天然气形成的重要途径,是指烃类在高温条件下将硫酸盐还原生成H2S、CO2等酸性气体的过程。由于硫化氢的剧毒和强腐蚀性,在石油天然气行业的钻井、完井、修井、净化加工以及运输等各个方面的危害一直备受人们的关注,对硫化氢和TSR的评价一直是负面的,在油气勘探中更多是在回避。最近研究发现,TSR作用对石油天然气工业具有重要的积极作用。TSR的发生,首先需要硫酸盐类溶解提供SO42-,储集空间得到初步改善;其次TSR反应形成的硫化氢,溶于水后显示出较强的酸性溶蚀作用,对白云岩储层具有最佳的溶蚀效果。在高温条件和储层中地层水的作用下,硫化氢与白云岩发生较强烈的酸性流体-岩石相互作用(水岩反应),促进了白云岩次生孔洞的发育和高孔高渗优质储集层的形成,使油气储层保存下限增大和深部天然气聚集成藏成为可能。而目前飞仙关组高含硫化氢气藏普遍压力系数小、充满度低,这与TSR及硫化氢对储层溶蚀导致储集空间增容有关。四川盆地油气勘探结果证实,所有高含硫化氢天然气藏均对应了次生孔隙十分发育的优质储层,岩性主要以白云岩为主,储层埋藏深度超过8 000 m时依然发育优质储层。  相似文献   
16.
通过分析特提斯构造域东段区域地质和含油气盆地勘探开发基础数据,从板块构造演化入手,系统编制特提斯构造域东段沉积构造演化剖面图和生储盖组合剖面图,研究盆地演化阶段、叠合特征、油气成藏条件及油气藏类型,揭示中亚和中国西部前陆盆地演化和油气富集规律异同。研究表明:古亚洲洋、古特提斯洋和新特提斯洋控制了特提斯构造域东段的区域构造分带、盆地演化、盆地类型及油气成藏模式。根据古洋壳缝合线可分为北、中、南3个构造带,古生代以来多期微板块的拼贴,导致特提斯构造域东段含油气盆地演化分为3个演化阶段,早古生代伸展、晚古生代挤压、早中生代伸展和新生代挤压构造作用控制了研究区盆地的叠合演化,发育下古生界、上古生界和中生界3套区域分布的优质烃源岩和下古生界、上古生界、中生界和新生界4套储盖组合,形成多种类型的油气藏。  相似文献   
17.
在中国元古宙—古生代海相沉积体系中,碳酸盐岩是最主要的沉积岩类型,长期以来研究的重点也一直是碳酸盐岩,对海相泥岩/页岩的关注比较少,并且认为碳酸盐岩是海相沉积盆地中主要的烃源岩。对中国南方上、中、下扬子地区、滇黔桂地区、塔里木盆地、鄂尔多斯盆地、华北地区等147条剖面、289口探井及浅井约11200余个样品有机碳含量的分析与统计表明,泥岩/页岩有机质丰度高,是中国元古宙—古生代海相沉积盆地中主要的烃源岩类型,而碳酸盐岩有机质丰度普遍较低,仅仅是次要的烃源岩类型。海相碳酸盐岩中有机质的含量与碳酸盐含量呈现弱的负相关性,泥质输入有利于形成高有机质丰度的碳酸盐岩烃源岩,但并不是高有机质丰度碳酸盐岩烃源岩发育的必要条件,决定碳酸盐岩烃源岩有机质丰度的主要因素是有机质的生产率、有机质的沉积与保存环境。中国元古宙—古生代海相沉积盆地中并不缺乏高有机质丰度泥岩/页岩类好烃源岩,上、中、下扬子地区主要发育于上震旦统陡山沱组、下寒武统、上奥陶统—下志留统、上二叠统;华南地区主要发育于中、下泥盆统;塔里木盆地主要发育于下寒武统、下奥陶统及中上奥陶统;华北地区为中新元古界洪水庄组、下马岭组。泥灰岩类碳酸盐岩烃源岩在塔里木盆地相对比较发育,在中国南方地区只有下二叠统相对发育。  相似文献   
18.
中国稠油区浅层天然气地球化学特征与成因机制   总被引:2,自引:0,他引:2  
在我国发育稠油的含油气盆地中,广泛分布着浅层天然气,浅层气资源潜力巨大.研究发现这些浅层天然气与稠油具有密切的成因关系,是厌氧微生物降解原油过程中形成的次生成因的生物气,也称为稠油降解气,它们一般分布在稠油油藏的上倾方向或周围.这种天然气以干气为主,主要成分是甲烷,乙烷以上的重烃类含量较低,非烃中N2含量较高;甲烷的碳同位素值偏轻,一般介于生物气与热解气之间,乙烷的碳同位素偏重,可能混合有热成因气;CO2显示出异常重的碳同位素值,因此,在微生物降解原油过程中碳同位素分馏效应十分明显.稠油降解气的生成是一个十分复杂的地质地球化学和微生物地球化学过程,是在多种微生物群体参与下发生的一系列有机-生物和水-烃反应综合作用的结果,受多种因素控制.  相似文献   
19.
四川盆地H2S的硫同位素组成及其成因探讨   总被引:20,自引:3,他引:20  
四川盆地天然气绝大部分含有硫化氢,部分含量高达15%以上。其中高含硫化氢天然气主要分布在三叠系飞仙关组、雷口坡组和嘉陵江组;震旦系、石炭系、二叠系属于低含硫化氢,上三叠统须家河组和侏罗系属于微含硫化氢或不含硫化氢天然气藏。研究表明,三叠系飞仙关组、雷口坡组和嘉陵江组、震旦系、石炭系储层中发育的膏质岩类为TSR形成硫化氢提供了物质基础;富含有机硫源岩的高温裂解是二叠系低含硫化氢天然气的主要成因。硫同位素组成表明,高含硫化氢天然气的硫同位素比储层硫酸盐硫同位素δ34S亏损7‰~11‰;而低含硫化氢天然气硫同位素分布区间较宽,在0‰~20‰之间,大部分比同期硫酸盐的硫同位素轻15‰左右。四川盆地三叠系膏岩的硫同位素值分布较宽,并呈现阶梯状变化,而硫化氢的硫同位素则呈现出相似的分布规律,表明各气层硫化氢中的硫来自于本层系的硫酸盐,即TSR发生在各自的储集层中;另外四川盆地三叠系TSR发生时各气藏的温度条件相近,即各气藏的硫化氢在大致相同的温度条件下发生;同时也说明TSR过程中硫同位素的分馏过程与硫酸盐本身硫同位素数值的高低无关,而与TSR反应的温度条件和反应程度有关。还建立了运用硫化氢的硫同位素和含量判识硫化氢成因类型的模式。  相似文献   
20.
川东北地区飞仙关组高含H2S天然气TSR成因的同位素证据   总被引:64,自引:0,他引:64  
四川盆地川东北地区是中国含油气盆地中已发现的高含硫化氢天然气储量最大的地区. 目前已探明储量和控制储量规模近3000×108m3. 这些高含硫化氢天然气藏主要分布在渡口河、铁山坡、罗家寨、普光等构造带上, 储集层为三叠系飞仙关组鲕滩云岩. 天然气中硫化氢含量平均在14%, 部分高达17%. 虽然多数学者认为H2S在深部碳酸盐储层中的大量聚集是硫酸盐热化学还原(Thermochemical sulfate reduction, TSR)的结果, 但是TSR过程及其留下的地质地球化学证据并不十分清晰. 作者通过对碳酸盐地层、次生方解石等的碳同位素, 硫化氢、硫磺、石膏、黄铁矿等的硫同位素分析, 以及天然气组成、烃类碳同位素和储层岩石学等方面, 进一步证实了该地区高含硫化氢天然气属硫酸盐热化学还原反应(TSR)成因. 硫化氢、硫磺和方解石是烃类气体参与TSR反应后形成的. 在TSR消耗烃类的过程中, 烃类气体中的碳参与反应并最终转移到次生方解石中, 成为次生方解石的碳源, 从而导致次生方解石的碳同位素严重偏轻, 可低到−18.2‰. TSR的中间产物硫磺和最终产物硫化氢及黄铁矿, 硫源均来自于飞仙关组地层中的硫酸盐. 在硫同位素分馏过程中, 键能决定了32S先逸出, 而且逸出越早, 其形成硫化物(H2S)或硫磺的d 34S越小; 而对于参与反应的石膏来讲, 反应程度越高, 其32S逸出越多, 剩余的32S就越少, 34S就会相对增多, 测试结果证明了硫同位素动力学分馏的这一过程.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号