首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28120篇
  免费   4311篇
  国内免费   5449篇
测绘学   3189篇
大气科学   4101篇
地球物理   6634篇
地质学   11820篇
海洋学   3972篇
天文学   1084篇
综合类   1949篇
自然地理   5131篇
  2024年   95篇
  2023年   332篇
  2022年   857篇
  2021年   1030篇
  2020年   1160篇
  2019年   1311篇
  2018年   1011篇
  2017年   1311篇
  2016年   1269篇
  2015年   1330篇
  2014年   1743篇
  2013年   2050篇
  2012年   1727篇
  2011年   1834篇
  2010年   1464篇
  2009年   1865篇
  2008年   1871篇
  2007年   1955篇
  2006年   1939篇
  2005年   1540篇
  2004年   1440篇
  2003年   1221篇
  2002年   999篇
  2001年   906篇
  2000年   774篇
  1999年   715篇
  1998年   708篇
  1997年   596篇
  1996年   493篇
  1995年   427篇
  1994年   348篇
  1993年   337篇
  1992年   239篇
  1991年   184篇
  1990年   139篇
  1989年   138篇
  1988年   104篇
  1987年   60篇
  1986年   55篇
  1985年   57篇
  1984年   37篇
  1983年   18篇
  1982年   26篇
  1981年   19篇
  1980年   21篇
  1978年   13篇
  1977年   19篇
  1976年   25篇
  1973年   17篇
  1971年   14篇
排序方式: 共有10000条查询结果,搜索用时 629 毫秒
991.
In order to understand the structure of fish assemblages in the modified Lima basin (Northern Portugal), two distinct datasets concerning the presence and abundance of fish species were subjected to multivariate analysis. On the River Lima two types of flow modification are present within kilometres of one another: (a) a reduced and constant flow due to hypolimnetic release; and (b) an intense and irregular flow. A comparison of their influence on fish assemblages revealed a gradient of assemblage types from tributaries to main river sites. The latter were characterised by a strong dominance of cyprinids, particularly Iberian barbel (Barbus bocagei). The former harboured two kinds of fish assemblages: those closer to the river mouth were dominated by the cyprinids Iberian chub (Squalius carolitertii) and Iberian nase (Chondrostoma polylepis), which were also frequently present in the main river; while in those further upstream the predominant species was the brown trout (Salmo trutta). Although explanatory variables such as distance from source, altitude, substrate coarseness and width were the primary correlates of fish assemblage composition, dam construction and flow regulation also had a significant effect upon assemblage structure, particularly by: i) reducing the importance of migratory species; ii) constraining the presence of trout in the regulated segments; and iii) simplifying the community, especially in the case of the constant and reduced flow regime.  相似文献   
992.
Alluvial fan development in Alpine areas is often affected by catastrophic sedimentary processes associated with extreme ?oods events, causing serious risks for people living on the fans. Hazard assessment in these areas depends on proper identi?cation of the dominant sedimentary processes on the fans. Data from a set of 209 alluvial fans from the central Alps of Italy are presented in this paper and analysed with the help of various statistical techniques (linear regression, principal components analysis, cluster analysis, discriminant analysis and logistic regression). First, we used modern sedimentary facies and historical records (?ood events since 15th century), to distinguish between the two dominant sedimentary processes on alluvial fans: debris ?ows and stream?ows. Then, in order to analyse the main controls on past and present fan processes, 36 morphological, geological and land‐use variables were analysed. As with observations for arid‐environment fans, catchment morphology is the most in?uential factor in the study area, whereas geology and land use are minor controls. The role of climatic change and landsliding within the catchments also seems to be very important and is discussed. Statistical techniques also help in differentiating groups of alluvial fans by sets of controlling factors, including stage and type of evolution. Finally, by using discriminant analysis and logistic regression, we classi?ed alluvial fans according to the dominant sedimentary process, with a success rate ranging between 75 and 92 per cent. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
993.
994.
Stability of arsenopyrite and As(III) in low-temperature acidic solutions   总被引:1,自引:0,他引:1  
Arsenopyrite is one of the most important pri-mary arsenic mineral. In the Eh-pH diagram of the As-O2-S-H2O system, if the total arsenic concentration (TAs) is taken to be 0.75 mg/L, the total sulfur con-centration, 32 mg/L, the temperature, 25℃and the pressure, one atmosphere pressure for the discrimina-tion of arsenic species, it may be found that under hy-pergene conditions, arsenopyrite is a moderately stable mineral. Only in the strongly alkaline and reducing environment can arsenopy…  相似文献   
995.
A procedure for developing equations that estimate the isolator displacement due to strong ground motion is applied to buildings isolated with the friction pendulum system. The resulting design equations, based on rigorous non‐linear analysis, offer an alternative to the iterative equivalent‐linear methods used by current U.S. building codes. The governing equations of the system are reduced to a form such that the median normalized displacement of the system due to an ensemble of ground motions is found to depend on only the isolation period—a function of the curvature of the isolator—and the friction force at incipient slip normalized by peak ground velocity. The normalization is effective in minimizing the dispersion of the normalized displacement for an ensemble of ground motions, implying that the median normalized displacement is a reliable estimate of response. The design equations reflect the significant (20 to 38%) increase in displacement when the excitation includes two lateral components of ground motion instead of just one component. Equivalent‐linear methods are shown to underestimate by up to 30% the exact median displacement determined by non‐linear response history analysis for one component of ground motion, and building codes include at most a 4.4% increase for a second component. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
996.
Although seismic isolation rubber bearings in bridges and buildings have proven to be a very effective passive method for reducing earthquake‐induced forces, a detailed mechanical modeling of the rubber that is used in bearings under large strains has not been established. Therefore, a 3D model of failure behavior and the design criteria for the safety evaluation of seismic isolation bearings have not yet been developed. This paper presents: (1) correlation‐based template‐matching algorithms to measure large strain fields of continua; (2) a failure criterion for rubber; and (3) the design criteria for the safety evaluation of laminated algorithms, data‐validation algorithms were developed and implemented to eliminate possible unrealistic displacement vectors present in the measured displacement field. The algorithms were successfully employed in the strain field measurement of LRB and rubber materials that are subjected to failure. The measured local strains for rubber material at failure were used to develop a failure criterion for rubber. The validity of the proposed criterion was evaluated by applying it to the LRB; the criterion was introduced into a 3D finite element model of LRB, compared with the experimental results of bearings failure, and verified. Finally, design criteria are proposed for LRB for the safety evaluation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
997.
A Markov method of analysis is presented for obtaining the seismic response of cable‐stayed bridges to non‐stationary random ground motion. A uniformly modulated non‐stationary model of the random ground motion is assumed which is specified by the evolutionary r.m.s. ground acceleration. Both vertical and horizontal components of the motion are considered to act simultaneously at the bridge supports. The analysis duly takes into account the angle of incidence of the earthquake, the spatial correlation of ground motion and the quasi‐static excitation. A cable‐stayed bridge is analysed under a set of parametric variations in order to study the non‐stationary response of the bridge. The results of the numerical study indicate that (i) frequency domain spectral analysis with peak r.m.s. acceleration as input could provide more r.m.s. response than the peak r.m.s. response obtained by the non‐stationary analysis; (ii) the longitudinal component of the ground motion significantly influences the vertical vibration of the bridge; and (iii) the angle of incidence of the earthquake has considerable influence on the deck response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
998.
A new complex modal analysis‐based method is developed in the frequency domain for efficient computation of the earthquake input energy to a highly damped linear elastic passive control structure. The input energy to the structure during an earthquake is an important measure of seismic demand. Because of generality and applicability to non‐linear structures, the earthquake input energy has usually been computed in the time domain. It is shown here that the formulation of the earthquake input energy in the frequency domain is essential for deriving a bound on the earthquake input energy for a class of ground motions and for understanding the robustness of passively controlled structures to disturbances with various frequency contents. From the viewpoint of computational efficiency, a modal analysis‐based method is developed. The importance of overdamped modes in the energy computation of specific non‐proportionally damped models is demonstrated by comparing the energy transfer functions and the displacement transfer functions. Through numerical examinations for four recorded ground motions, it is shown that the modal analysis‐based method in the frequency domain is very efficient in the computation of the earthquake input energy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
999.
An Erratum has been published for this article in Earthquake Engng. Struct. Dyn. 2004; 33:1429. Based on structural dynamics theory, the modal pushover analysis (MPA) procedure retains the conceptual simplicity of current procedures with invariant force distribution, now common in structural engineering practice. The MPA procedure for estimating seismic demands is extended to unsymmetric‐plan buildings. In the MPA procedure, the seismic demand due to individual terms in the modal expansion of the effective earthquake forces is determined by non‐linear static analysis using the inertia force distribution for each mode, which for unsymmetric buildings includes two lateral forces and torque at each floor level. These ‘modal’ demands due to the first few terms of the modal expansion are then combined by the CQC rule to obtain an estimate of the total seismic demand for inelastic systems. When applied to elastic systems, the MPA procedure is equivalent to standard response spectrum analysis (RSA). The MPA estimates of seismic demand for torsionally‐stiff and torsionally‐flexible unsymmetric systems are shown to be similarly accurate as they are for the symmetric building; however, the results deteriorate for a torsionally‐similarly‐stiff unsymmetric‐plan system and the ground motion considered because (a) elastic modes are strongly coupled, and (b) roof displacement is underestimated by the CQC modal combination rule (which would also limit accuracy of RSA for linearly elastic systems). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
1000.
Two approximate methods for decomposing complicated inelastic dynamic responses of wall buildings into simple modal responses are presented. Both methods are based on the equivalent linear concept, where a non‐linear structure is represented by a set of equivalent linear models. One linear model is used for representing only one vibration mode of the non‐linear structure, and its equivalent linear parameters are identified from the inelastic response time histories by using a numerical optimizer. Several theoretical relations essential for the modal decomposition are derived under the framework of complex modal analysis. Various numerical examinations have been carried out to check the validity of the proposed modal decomposition methods, and the results are quite satisfactory in all cases. Fluctuating bending moment and shear at any location along the wall height contributed by each individual vibration mode can be obtained. Modal contributions to shear and flexural strength demands, as well as the corresponding modal properties, under various seismic loading conditions can also be identified and examined in detail. Furthermore, the effects of higher vibration modes on seismic demands of wall buildings are investigated by using the modal decomposition methods. Several new insights into the complicated inelastic dynamics of multi‐story wall buildings are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号