首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   41篇
  国内免费   81篇
测绘学   1篇
地球物理   32篇
地质学   241篇
海洋学   4篇
综合类   8篇
自然地理   55篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   11篇
  2020年   4篇
  2019年   10篇
  2018年   8篇
  2017年   15篇
  2016年   12篇
  2015年   12篇
  2014年   25篇
  2013年   25篇
  2012年   21篇
  2011年   12篇
  2010年   13篇
  2009年   6篇
  2008年   14篇
  2007年   12篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   15篇
  2001年   10篇
  2000年   12篇
  1999年   4篇
  1998年   8篇
  1997年   5篇
  1996年   9篇
  1995年   2篇
  1994年   7篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   6篇
  1984年   1篇
排序方式: 共有341条查询结果,搜索用时 218 毫秒
111.
The uncommon Mg-rich and Ti-poor Zhaoanzhuang serpentine-magnetite ores within Taihua Group of the North China Craton(NCC) remain unclear whether the protolith was sourced from ultramafic rocks or chemical sedimentary sequences. Here we present integrated petrographic and geochemical studies to characterize the protoliths and to gain insights on the ore-forming processes. Iron ores mainly contain low-Ti magnetite(TiO_2 ~0.1 wt%) and serpentine(Mg#=92.42–96.55), as well as residual olivine(Fo=89–90), orthopyroxene(En=89–90) and hornblende. Magnetite in the iron ores shows lower Al, Sc, Ti, Cr, Zn relative to that from ultramafic Fe-Ti-V iron ores, but similar to that from metamorphic chemical sedimentary iron deposit. In addition, interstitial minerals of dolomite, calcite, apatite and anhydrite are intergrown with magnetite and serpentine, revealing they were metamorphic, but not magmatic or late hydrothermal minerals. Wall rocks principally contain magnesian silicates of olivine(Fo=83–87), orthopyroxene(En=82–86), humite(Mg#=82–84) and hornblende [XMg=0.87–0.96]. Dolomite, apatite and anhydrite together with minor magnetite, thorianite(Th-rich oxide) and monazite(LREE-rich phosphate) are often seen as relicts or inclusions within magnesian silicates in the wall rocks, revealing that they were primary or earlier metamorphic minerals than magnesian silicates. And olivine exists as subhedral interstitial texture between hornblende, which shows later formation of olivine than hornblende and does not conform with sequence of magmatic crystallization. All these mineralogical features thus bias towards their metamorphic, rather than magmatic origin. The dominant chemical components of the iron ores are SiO_2(4.77–25.23 wt%), Fe_2O_3 T(32.9–80.39 wt%) and MgO(5.72–27.17 wt%) and uniformly, those of the wall rocks are also SiO_2(16.34–48.72 wt%), Mg O(16.71–33.97 wt%) and Fe_2O_3 T(6.98–30.92 wt%). The striking high Fe-Mg-Si contents reveal that protolith of the Zhaoanzhuang iron deposit was more likely to be chemical sedimentary rocks. The distinct high-Mg feature and presence of abundant anhydrite possibly indicate it primarily precipitated in a confined seawater basin under an evaporitic environment. Besides, higher contents of Al, Ti, P, Th, U, Pb, REE relative to other Precambrian iron-rich chemical precipitates(BIF) suggest some clastic terrestrial materials were probably input. As a result, we think the Zhaoanzhuang iron deposit had experienced the initial Fe-Mg-Si marine precipitation, followed by further Mg enrichment through marine evaporated process, subsequent high-grade metamorphism and late-stage hydrothermal fluid modification.  相似文献   
112.
张建鹏 《地质与勘探》2018,54(S1):1356-1364
新疆阿克陶县苏巴什一带具有优越的成矿地质条件,带内相继发现了多个铁矿床,并具有一定的空间连续性。本文通过总结对比带内不同铁矿床的地质特征、赋矿地层、构造变质变形等特征,并以带内典型的磁铁矿床为例,深入分析矿体地质特征、矿体形态、矿物组合及矿石结构构造特征,认为该地区的磁铁矿具有相似的矿床成因及成矿演化史,经历了原始沉积期、区域变质改造期和热液叠加改造期3个阶段,属于沉积变质型磁铁矿。通过物探磁测,明确了区内磁异常主要由磁铁矿(化)引起,并总结了带内磁铁矿找矿标志,为该区铁矿进一步勘探调查指明方向。  相似文献   
113.
膏盐层在矽卡岩型铁矿成矿中的作用   总被引:11,自引:0,他引:11  
李延河  谢桂青  段超  韩丹  王成玉 《地质学报》2013,87(9):1324-1334
矽卡岩型铁矿是我国富铁矿的重要类型,约占全国富铁矿总储量的60%。虽然膏盐层与矽卡岩型铁矿的关系已引起部分矿床学家的关注,但膏盐层的控矿机制尚不清楚。本文以我国最重要的大冶式和邯邢式矽卡岩型铁矿为例,探讨了膏盐层在矽卡岩型铁矿成矿中的作用。膏盐层富含碳酸盐、石膏和石盐等,不仅可以为成矿提供大量Na+、Cl-、CO32+等矿化剂,使围岩发生钠长石化、方柱石化(氯化)和矽卡岩化等蚀变,使Fe2+以NaFe-Cl等络合物形式搬运,膏盐层还是地壳深处最重要的氧化障,能够将硅酸盐熔体和成矿溶液中的Fe2+氧化成Fe3+,富集形成铁矿床,是矽卡岩型铁矿成矿的关键因素。大冶地区的膏盐层属于中三叠统下部的嘉陵江组,邯邢地区的膏盐层属于中奥陶统马家沟组—峰峰组。大冶和邯邢式矽卡岩型铁矿中硫化物的δ34SV-CDT值异常高,计算结果表明矿床中约80%的硫来自膏盐层硫酸盐的还原,还原温度多在500℃以上,但硫化物的沉淀温度相对较低,就位时间稍晚;硫酸盐的δ34SV-CDT值和还原温度越高,硫化物的δ34SV-CDT值越高,原始岩浆硫所占比例越高,硫化物的δ34SV-CDT值越低。当炽热的岩浆与膏盐层(CaSO4)发生同化混染时,SO42-将硅酸盐熔体中的Fe2+氧化成Fe3+,Fe3+无法进入硅酸盐矿物晶格,而形成Fe3O4/Fe2O3进入熔体,铁氧化物在磷、氯化钠、水等挥发分和盐类物质的作用下在岩浆房中与硅酸盐熔体发生不混熔,形成铁矿浆,沿构造有利部位贯入,形成矿浆型铁矿床。在矽卡岩型铁矿床中,矿浆充填型和热液交代型矿体同时存在,二者在空间上具有一定的分带性,有时渐变过渡,矿浆充填型铁矿体通常位于深部靠近成矿岩体的部位,而热液交代型铁矿体位于成矿流体运移的前方。在SO42-氧化Fe2+的同时自身被还原为S2-,与Fe2+结合形成硫铁矿,分布在铁矿的上部或边部。  相似文献   
114.
磁铁矿中磁性物成分的测定及可选性评价   总被引:3,自引:3,他引:0  
对磁铁矿样品分别用磁选管和手工内磁选法进行磁选,并对原矿样品和样品的磁性物中TFe、P、S、V2O5、TiO2、SiO2、Al2O3、CaO、MgO、Sn、Cu、Pb、Zn的含量进行测定.分析结果表明,采用手工内磁选和磁选管对磁铁矿进行磁选所得的结果一致,为了简便操作,本文均采用手工内磁选法选出磁性物.A矿区磁性铁(mFe)含量(22.42%)比B矿区mFe含量(22.59%)低,但A矿区样品的磁性物中TFe含量(磁铁精矿品位)大于66%,比B矿区样品的磁性物中TFe含量(小于57%)高,A矿区的磁铁矿选矿效果明显好于B矿区,说明对磁性物中TFe含量的测定能够更好地反映矿石的可选性.原矿样品中P、S的含量分别为0.328%、0.271%,而样品的磁性物中P、S的含量为0.021%、<0.005%,均达到铁矿石冶炼标准;原矿样品中V2O5、TiO2的含量分别为0.156%、1.37%,而样品的磁性物中V2O5、TiO2含量分别为0.823%、13.62%,达到了铁矿石冶炼标准.原矿样品的(CaO+MgO)/(SiO2 +Al2O3)值为0.876,为自熔性矿石,而其磁性物的(CaO+ MgO)/(SiO2+Al2O3)值为0.453,为酸性矿石.由此说明,单纯测定原矿样品中的各成分尚不能对磁铁矿的可选性进行科学性评价,只有进一步测定磁铁矿的磁性物中各成分的含量,才能够对磁铁矿进行可靠的评价.本文通过对磁铁矿中磁性物成分的测定,为磁铁矿的选冶性能提供了新的评价方法.  相似文献   
115.
In this work, we investigate the correlation between some magnetic parameters and the level of contamination by heavy metals in urban soils from Morelia city, western Mexico. The magnetic study was carried out on 98 urban soils samples belonging to distinct land uses. Most of analyzed samples contain ferrimagnetic minerals as the responsible for magnetization, most probably corresponding to the titanomagnetites/ titanomaghemites solid solutions. This is inferred from the susceptibility vs. temperature measurements and the isothermal remanent magnetization (IRM) experiments. These measurements also indicate that most of samples are almost completely saturated before 300 mT. Additionally, the S-200 values (S-200 = IRM-200/ SIRM, where IRM-200= Back-field of 200 mT after magnetic saturation) are between 0.7 and 1.0, characteristic of low coercivity magnetic minerals. The averaged saturation isothermal remanent magnetization (SIRM) curves can be used as an indicator of pollution level, as these curves show different saturation values according to the level of contamination by heavy metals: Cu, Ni, Cr and Sr. These associations of (titano)magnetite with heavy metals were observed by Scanning Electron Microscope revealing some complex aggregates rather than commonly detected spherules.  相似文献   
116.
Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism.  相似文献   
117.
元阳县红土寨超贫磁铁矿是复合型铁矿,前寒武纪扬子地块边缘裂谷环境火山物质沉积物提供矿源。找矿方向主要为哀牢山群的阿龙组中—基性火山—沉积建造。  相似文献   
118.
南付家河磁铁矿地处南秦岭被动陆缘菜子坪—柞水推覆岩片带内,近矿围岩为一套钠长岩,泥盆系发育的同沉积断层控制了矿体的空间位置,矿床成因属热水喷流沉积型。  相似文献   
119.
Rock magnetic investigations of archaeological materials of burnt clay from Eneolithic ovens (4500 years BC) showed particular changes with time in the magnetic mineralogy of samples, stored under normal conditions. Our results indicate that well-burnt clay from the archaeological materials contains a significant amount of very fine magnetic grains, which could notably influence the rock magnetic properties and behavior at room temperature. The main observations after 4 years of storage under laboratory conditions are as follows: 1) decrease in the final unblocking temperature of NRM from 600–620°C to 580°C and 2) increase in the capacity of laboratory TRM acquisition. The most probable mechanism responsible for the observed changes is supposed to be fast low-temperature oxidation of the finest (superparamagnetic) grains and the development of the maghemite shell in coarser single-domain grains. The Thellier palaeointensity experiments, carried out at the beginning of the study, showed very good results, which satisfy all acceptance criteria, applied to evaluation of the results, quite well. Palaeointensity determinations repeated 4 years later on samples from the same material showed the experimental results to be of significantly inferior quality. The main difference is the presence of the significant deviation (change in the slope) on the Arai diagram after T>350–400°C. The calculated palaeointensity is either higher than the one obtained before, or similar, but evaluated with large uncertainty. Therefore, we conclude that the possibility to obtain biased palaeointensity values increases during short-time storage (i.e. several years) due to the low-temperature changes of the material.  相似文献   
120.
安徽庐江龙桥铁矿火山成矿特征   总被引:3,自引:0,他引:3  
安徽庐江龙桥铁矿属一大型隐伏磁铁矿矿床。从矿石结构、构造、矿体产状、矿石自然类型的分布规律及地球化学特征等方面分析,火山成矿作用是该矿床形成的重要因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号