首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   38篇
  国内免费   72篇
地球物理   81篇
地质学   243篇
海洋学   14篇
综合类   2篇
自然地理   4篇
  2024年   1篇
  2023年   1篇
  2022年   16篇
  2021年   18篇
  2020年   5篇
  2019年   11篇
  2018年   11篇
  2017年   7篇
  2016年   6篇
  2015年   13篇
  2014年   3篇
  2013年   20篇
  2012年   8篇
  2011年   9篇
  2010年   11篇
  2009年   20篇
  2008年   11篇
  2007年   18篇
  2006年   11篇
  2005年   15篇
  2004年   14篇
  2003年   9篇
  2002年   7篇
  2001年   9篇
  2000年   13篇
  1999年   8篇
  1998年   12篇
  1997年   12篇
  1996年   15篇
  1995年   8篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1989年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有344条查询结果,搜索用时 797 毫秒
31.
Abstract This paper contains extended abstracts of the seven papers presented at the symposium 'Radiolarians and Orogenic Belts' held at the seventh meeting of the International Association of Radiolarian Paleontologists (INTERRAD). Important results of the symposium include the following: (1) Upper Paleozoic and Mesozoic cherts are widely distributed within accretionary complexes in the circum-Pacific orogenic belt. Radiolarian dating reveals that long durations of chert sedimentation in a pelagic environment are recorded on both sides of Pacific-rim accretionary complexes (e.g. New Zealand, Japan, Russian Far East, Canadian Cordillera). (2) Triassic radiolarian faunas from New Zealand and the Omolon Massif, northeast Siberia are similar in composition and are characterized by the absence of typical Tethyan elements. This suggests that radiolarian faunal provincialism may have been established as early as the Triassic. High-latitude radiolarian taxa exhibit a bi-polar distribution pattern. (3) The Lower Triassic interval in chert dominant pelagic sequences is mechanically weaker than other levels and acted as a décollement in accretionary events. This lithologic. contrast in physical property is considered to reflect radiolarian evolution, such as the end-Permian mass extinction.  相似文献   
32.
Abstract The low grade metamorphic Jurassic accretionary complex in the western part of the Mino-Tanba Belt, Southwest Japan, is a chaotic sedimentary complex which consists of argillaceous matrices with allochthonous blocks of chert, greenstone, siliceous mudstone, terrigenous sandstone and mudstone. The complex is divided into three distinct geologic units, Units I, II and III, with a tectonic boundary (thrust) between them, forming a pile-nappe structure. They have different features for lithologies, fossil age, metamorphic condition and K-Ar age. Microfossil researches revealed that their timings of accretion were in the early Early Jurassic ( ca 195 Ma) for Unit III, in the early Middle Jurassic ( ca 175 Ma) for Unit II and in the latest Late Jurassic (ca 147 Ma) for Unit I. On the other hand, K-Ar age determinations of white mica separated from pelitic rocks of the three units clarified that the subsequent subduction-related metamorphism was 23 million years after the accretion of each unit. These results strongly suggest that the accretionary and metamorphic process had taken place episodically with an interval of 20 to 28 million years during Mesozoic time in the western part of the Mino-Tanba Belt, Southwest Japan.  相似文献   
33.
东特提斯板块会聚边缘与岛弧造山作用   总被引:4,自引:2,他引:4       下载免费PDF全文
本文重点简述了特提斯构造域内古,中,新三个演化阶段的蛇绿混杂岩与岛弧带的时空展布及其沟-弧-盆体系,所识别出的蛇绿混杂岩,洋中脊拉斑玄武岩,大洋沉积物的岛弧带等地质记录,提供了东特提斯早期大洋岩石圈板块运动的有力证据。同时,与岛弧有关的不同时期不同阶段的各种弧前盆地,弧间盆地和弧后贫地成为造山带板块会聚边缘特征的标志。  相似文献   
34.
Abstract The Shimanto accretionary complex on the Muroto Peninsula of Shikoku comprises two major units of Tertiary strata: the Murotohanto Sub-belt (Eocene-Oligocene) and the Nabae Sub-belt (Oligocene-Miocene). Both sub-belts have been affected by thermal overprints following the peak of accretion-related deformation. Palaeotemperatures for the entire Tertiary section range from ~ 140 to 315°C, based upon mean vitrinite reflectance values of 0.9–5.0%Rm. Values of illite crystallinity index are consistent with conditions of advanced diagenesis and anchimetamorphism. Illite/mica b0 lattice dimensions indicate that burial pressures were probably no greater than 2.5kbar. In general, levels of thermal maturity are higher for the Murotohanto Sub-belt than for the Nabae Sub-belt. The Eocene-Oligocene strata also display a spatial decrease in thermal maturity from south to north and this pattern probably was caused by regional-scale differential uplift following peak heating. Conversely, the palaeothermal structure within the Nabae Sub-belt is fairly uniform, except for the local effects of mafic intrusions at the tip of Cape Muroto. There is a paleotemperature difference of ~ 90°C across the boundary between the Murotohanto and Nabae Sub-belts (Shiina-Narashi fault), and this contrast is consistent with approximately 1200 m of post-metamorphic vertical offset. Subduction prior to Middle Miocene probably involved the Kula or fused Kula-Pacific plate and the background geothermal gradient during the Eocene-Oligocene phase of accretion was ~ 30–35°C/km. Rapid heating of the Shimanto Belt evidently occurred immediately after a Middle Miocene reorganization of the subduction boundary. Hot oceanic lithosphere from the Shikoku Basin first entered the subduction zone at ~ 15 Ma; this event also coincided with the opening of the Sea of Japan and the rapid clockwise rotation of southwest Japan. The background geothermal gradient at that time was ~ 70°C/km. Whether or not all portions of the inherited (Eocene-Oligocene) palaeothermal structure were overprinted during the Middle Miocene remains controversial.  相似文献   
35.
James  Hibbard  Daniel  Karig Asahiko  Taira 《Island Arc》1992,1(1):133-147
Abstract The Late Oligocene-Early Miocene Nabae Sub-belt of the Shimanto Accretionary Prism was created coevally (ca 25-15 Ma) with the opening of the Shikoku back-arc basin, located to the south of the southwest Japan convergent margin. The detailed geology of the sub-belt has been controversial and the interaction of the Shimanto accretionary prism and the opening of the Shikoku Basin has been ambiguous. New structural analysis of the sub-belt has led to a new perception of its structural framework and has significant bearing on the interpretation of the Neogene tectonics of southwest Japan. The sub-belt is divided into three units: the Nabae Complex; the Shijujiyama Formation; and the Maruyama Intrusive Suite. The Nabae Complex comprises coherent units and mélange, all of which show polyphase deformation. The first phase of deformation appears to have involved landward vergent thrusting of coherent units over the mélange terrane. The second phase of deformation involved continued landward vergent shortening. The Shijujiyama Formation, composed mainly of mafic volcanics and massive sandstone, is interpreted as a slope basin deposited upon the Nabae Complex during the second phase of deformation. The youngest deformational pulse involved regional flexing and accompanying pervasive faulting. During this event, mafic rocks of the Maruyama Intrusive Suite intruded the sub-belt. Fossil evidence in the Nabae Complex and radiometric dates on the intrusive rocks indicate that this tectonic scheme was imprinted upon the sub-belt between ~23 and ~14 Ma. The timing of accretion and deformation of the sub-belt coincides with the opening of the Shikoku Basin; hence, subduction and spreading operated simultaneously. Accretion of the Nabae Sub-belt was anomalous, involving landward vergent thrusting, magmatism in newly accreted strata and regional flexing. It is proposed that this complex and anomalous structural history is largely related to the subduction of the active Shikoku Basin spreading ridge and associated seamounts.  相似文献   
36.
云南巍山—永平矿集区位于兰坪走滑拉分盆地南段,有铜金多金属中、小型矿床及矿化点140余处,盆地发育和成矿作用与印度—亚洲板块碰撞密切相关。为了探索该矿集区成矿热液的来源,研究了该区成矿流体的稳定同位素特征。区内成矿流体系统可分为紫金山子系统与公郎弧子系统。公郎弧子系统内铜钴矿床成矿流体的δD为-83.8‰~-69‰,δ18O为4.17‰~10.45‰,δ13C为-13.6‰~3.7‰,成矿流体主要来源于岩浆水及地层水。紫金山子系统内金、铅锌、铁矿床成矿流体的δD为-117.4‰~-76‰,δ18O为5.32‰~9.56‰,δ13C为-10.07‰~-1.5‰;锑矿成矿流体的δD为-95‰~-78‰,δ18O为4.5‰~32.3‰,δ13C为-26.4‰~-1.9‰,成矿流体来源于地层水以及岩浆水。受印度板块与亚洲板块碰撞造山作用的影响,在该盆地内,成矿流体自南西向北东大规模迁移过程中,先形成温度、盐度较高的公郎弧子系统,随着流体向北东推进,温度、盐度逐渐降低,流体成分发生变化,演变为紫金山子系统。  相似文献   
37.
Francesca  Liberi  Lauro  Morten  Eugenio  Piluso 《Island Arc》2006,15(1):26-43
Abstract Slices of oceanic lithosphere belonging to the neo‐Tethys realm crop out discontinuously in the northern Calabrian Arc, Southern Apennines. They consist of high‐pressure–low‐temperature metamorphic ophiolitic sequences formed from metaultramafics, metabasites and alternating metapelites, metarenites, marbles and calcschist. Ophiolites occupy an intermediate position in the northern Calabrian Arc nappe pile, situated between overlying Hercynian continental crust and the underlying Apenninic limestone units. In the literature, these ophiolitic sequences are subdivided into several tectonometamorphic units. Geochemical characteristics indicate that metabasites were derived from subalkaline basalts with tholeiitic affinity (transitional mid‐oceanic ridge basalt type), and a harzburgitic‐lherzolitic protolith is suggested for the serpentinites. The pressure–temperature‐deformation paths of the metabasites from different outcrops display similar features: (i) the prograde segment follows a typical Alpine geothermal gradient up to a metamorphic climax at 350°C and 0.9 GPa and crystallization of the high‐pressure mineral assemblage occurs along a pervasive foliation developed during a compressive tectonic event; and (ii) the retrogression path can be subdivided in two segments, the first is characterized by nearly isothermal decompression to approximately 400°C and 0.3 GPa and the second follows a cooling trajectory. During low‐pressure conditions, a second deformation event produces millimetric to decametric scale asymmetric folds that describe west‐verging major structures. The third deformation event is characterized by brittle extensional structures. The tectonometamorphic evolution of the ophiolitic sequences from the different outcrops is similar. Both thermobarometric modeling and tectonic history indicate that the studied rocks underwent Alpine subduction and exhumation processes as tectonic slices inside a west‐verging accretionary wedge. The subduction of oceanic lithosphere was towards the present east; therefore, the Hercynian continental crust, overthrusted on the ophiolitic accretionary wedge after the neo‐Tethys closure, was part of the African paleomargin or a continental microplate between Africa and Europe.  相似文献   
38.
藏东波密-察隅地区新元古代-寒武纪波密群研究新进展   总被引:1,自引:0,他引:1  
藏东新元古代—寒武纪波密群由一套浅变质的活动大陆边缘浊积岩和碰撞型岛弧中酸性火山岩组成,化石稀少,缺乏时代依据。1∶20万区调和新一轮1∶25万区调修测专题研究在波密、察隅、贡山一带共采获微古植物化石21属50种,均为青、皖、浙、赣及滇中地区新元古代青白口纪、震旦纪及部分寒武纪早期较原始类型的常见分子。区域上可与高喜马拉雅的肉切村群,滇西的勐统群、公养河群和缅甸的Chaung Magyi群相对比。上述波密群活动大陆边缘浊积岩、碰撞型岛弧火山岩在经历了泛非末期壳源重熔花岗岩侵位(500~600Ma)和褶皱变质作用(644~664Ma)之后,成为冈瓦纳大陆北缘增生褶皱变质基底的一部分。  相似文献   
39.
On the basis of geological observations and the study of conodont and radiolarian microfauna, a new stratigraphic scheme was proposed for the Mesozoic deposits of the Komsomolsk district of the Amur region. The lower Khorpy Group (T2-J3) consists of two units: the Boktor (T2-J2) and Kholvasi (J2–3). The Boktor Sequence (400 m thick) is represented by pelagic cherts with an admixture of cherty-clayey shales and volcanic rocks. The Kholvasi Sequence (500 m thick) is built up of the predominant siltstones and clayey shales with rare intercalations and lenses of clayey cherts and cherty-clayey shales. The upper Komsomolskaya Group (K1) has a terrigenous composition and includes the Gorin, Pionerskaya, and Pivan formations of 5 km total thickness. It is made up of intercalated sandstones, siltstones, mudstones, and often turbidites (proximal to distal). The rocks contain abundant buchia fauna of Volgian-Valanginian age, as well as carbonized plant detritus and flora of the Early Cretaceous habit. The described complex is characterized by a nappe-fold structure typical of the accretionary prisms in the ocean-continent convergence zones. The predominance of the coherent type of accretionary prisms reflects the simple morphology of the oceanic plate.  相似文献   
40.
A subduction complex composed of ocean floor material mixed with arc-derived metasediments crops out in the Elephant Island group and at Smith Island, South Shetland Islands, Antarctica, with metamorphic ages of 120–80 Ma and 58–47 Ma, respectively. Seven metamorphic zones (I–VII) mapped on Elephant Island delineate a gradual increase in metamorphic grade from the pumpellyite–actinolite facies, through the crossite–epidote blueschist facies, to the lower amphibolite facies. Geothermometry in garnet–amphibole and garnet–biotite pairs yields temperatures of about 350 °C in zone III to about 525 °C in zone VII. Pressures were estimated on the basis of Si content in white mica, Al2O3 content in alkali amphibole, NaM4/AlIV in sodic-calcic and calcic amphibole, AlVI/Si in calcic amphibole, and jadeite content in clinopyroxene. Mean values vary from about 6–7.5 kbar in zone II to about 5 kbar in zone VII. Results from the other islands of the Elephant Island group are comparable to those from the main island; Smith Island yielded slightly higher pressures, up to 8 kbar, with temperatures estimated between 300 and 350 °C. Zoned minerals and other textural indications locally enable inference of P–T t trajectories, all with a clockwise evolution. A reconstruction in space and time of these PT t paths allows an estimate of the thermal structure in the upper crust during the two ductile deformation phases (D1 & D2) that affected the area. This thermal structure is in good agreement with the one expected for a subduction zone. The arrival and collision of thickened oceanic crust may have caused the accretion and preservation of the subduction complex. In this model, D1 represents the subduction movements expressed by the first vector of the clockwise P–T–t path, D2 reflects the collision corresponding to the second vector with increasing temperature and decreasing pressure, and D3 corresponds to isostatic uplift accompanied by erosion, under circumstances of decreasing temperature and pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号