首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   3篇
地质学   6篇
综合类   6篇
自然地理   30篇
  2019年   1篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
  2004年   13篇
  2003年   3篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
11.
向海沼泽湿地土壤氮素的空间分布格局   总被引:15,自引:2,他引:13  
本文运用地统计学方法探讨了吉林省通榆县向海沼泽湿地土壤氮素在植物生长初期的空间分布格局 ,结果表明除铵态氮外 ,其他各形态氮素主要集中分布在表层土壤 ,呈现出由表层向下逐渐减少的趋势。各形态氮素和全氮都具有高度的变异特征 ,其中表层土壤碱解氮的变异最大 ,铵态氮最小 ,变异系数分别为 6 5 6 4%和 4 9 5 1% ;其他各层土壤有机氮、全氮和硝态氮含量的统计变异较大 ,而碱解氮和铵态氮较小 ;有机氮和全氮的空间分布格局具有显著的相似性 ;表层土壤全氮、有机氮和碱解氮的高值区和低值区具有高度的一致性 ;除碱解氮主要集中在土壤表层外 ,其他形态氮素和全氮在土壤较深层次均出现累积峰。  相似文献   
12.
In this paper, the CO2 concentrations profile from 1.5 m depth in soil to 32 m height in atmosphere were measured from July 2000 to July 2001 in an alpine grassland ecosystem located in the permafrost area on the Tibetan Plateau, which revealed that CO2 concentrations varied greatly during this study period. Mean concentrations during the whole experiment in the atmosphere were absolutely lower than the CO2 concentrations in soil, which resulted in CO2 emissions from the alpine steppe soil to the atmosphere. The highest CO2 concentration was found at a depth of 1.5 m in soil while the lowest CO2 concentration occurred in the atmosphere. Mean CO2 concentrations in soil generally increased with depth. This was the compositive influence of the increasing soil moistures and decreasing soil pH, which induced the increasing biological activities with depth. Temporally, the CO2 concentrations at different layers in air remained a more steady state because of the atmospheric turbulent milking. During the seasonal variations, CO2 concentrations at surface soil interface showed symmetrical patterns, with the lowest accumulation of CO2 occurring in the late winter and the highest CO2 concentration in the growing seasons.  相似文献   
13.
14.
阿姆河右岸地区侏罗系海相烃源岩生烃潜力   总被引:2,自引:0,他引:2  
阿姆河右岸地区侏罗系发育三种类型的烃源岩,其有机质丰度均不相同,上侏罗统海相高伽马值泥岩的最高,其次为海相泥灰岩,中下侏罗统海陆过渡相煤系泥岩相对偏低,烃源岩的等级分别属于好烃源岩、中等烃源岩和中—差烃源岩。对比表明,这三种烃源岩的有机质丰度高于中国含油气盆地的同类型烃源岩,说明盆地具有油气生成的较好物质基础。本区海相烃源岩干酪根微组分中腐泥组含量高,但干酪根中氢原子含量低,有机质主要来源于藻类等低等生物。根据干酪根H/C原子比、氢指数IH和碳同位素δ13C三项指标判断,上侏罗统海相烃源岩属于Ⅱ—Ⅲ型母质。上侏罗统高伽马值泥岩和泥灰岩已达生烃高峰阶段(Ro大多在0.8%~1.3%),有利于常规油、凝析油和湿气的生成,总烃/有机碳已达到15.88%~18.4%,接近Ⅱ型烃源岩液态烃的产烃率,说明侏罗系海相烃源岩具有较高的生烃能力。  相似文献   
15.
阿姆河右岸地区侏罗系发育三种类型的烃源岩,其有机质丰度均不相同,上侏罗统海相高伽马值泥岩的最高,其次为海相泥灰岩,中下侏罗统海陆过渡相煤系泥岩相对偏低,烃源岩的等级分别属于好烃源岩、中等烃源岩和中—差烃源岩。对比表明,这三种烃源岩的有机质丰度高于中国含油气盆地的同类型烃源岩,说明盆地具有油气生成的较好物质基础。本区海相烃源岩干酪根微组分中腐泥组含量高,但干酪根中氢原子含量低,有机质主要来源于藻类等低等生物。根据干酪根H/C原子比、氢指数IH和碳同位素δ13C三项指标判断,上侏罗统海相烃源岩属于Ⅱ—Ⅲ型母质。上侏罗统高伽马值泥岩和泥灰岩已达生烃高峰阶段(Ro大多在0.8%~1.3%),有利于常规油、凝析油和湿气的生成,总烃/有机碳已达到15.88%~18.4%,接近Ⅱ型烃源岩液态烃的产烃率,说明侏罗系海相烃源岩具有较高的生烃能力。  相似文献   
16.
青藏高原年楚河流域径流变化特征分析   总被引:1,自引:0,他引:1  
基于青藏高原河流年楚河1961-2000年天然径流量资料,选用Mann-Kendal分析方法和小波分析等方法对年楚河径流变化特征进行研究。结果表明:年楚河流域径流量年际变化相对平稳,年内分配极不均衡。丰水季节与枯水季节径流量相差悬殊,6-9月径流量占全年65%,最大月径流量占全年百分比达24.56%;在1961-2000年中,年楚河径流量呈现显著增加趋势,在1985年左右径流量发生突变性增加;日喀则和江孜两站5-8年左右时间尺度的周期震荡最显著,其次10-15年左右时间尺度的周期震荡也较为显著,两站径流量变化的主周期分别为5年和7年,次周期分别为13和12年。年楚河流域气温升高引起冰川融水增加可能是年楚河径流量增加的主要原因。  相似文献   
17.
青藏高原高寒草原土壤活性有机碳的分布特征   总被引:6,自引:0,他引:6  
利用36个样点数据,分析了青藏高原高寒草原土壤活性有机碳(SAOC)分布特征.结果表明:(1)在水平方向上,SAOC含量呈现出东南高、西北低的总体态势和斑块状交错分布的格局,高值区主要集中在藏北高原腹地和喜马拉雅北麓湖盆区,不同草地型和自然地带SAOC含量差异显著;(2)在垂直方向上,不同草地型和自然地带0~40cm剖面SAOC含量分布状况,均可分为由高到低型、由低到高型和低-高-低型3个类型,表土层(0~10cm)与底土层(30~40cm)SAOC含量差异显著;(3)基于回归模型的标准系数法,分析了气候因子对高寒草原SAOC含量的影响程度,指出降水对高寒草原SAOC含量的贡献大于气温.  相似文献   
18.
基于RFE2.0模型和Penman-Monteith模型,采用潜在蒸散降水比分析了2001—2010年青藏高原生长季(5—9月)干湿气候的时空变化格局,并对其影响因素进行了探讨。结果表明:(1)干旱和半干旱区占整个青藏高原区域的67%,主要集中在高原中部及中部以北;(2)2001—2010年有25%的区域在逐渐变干,北部干旱程度总体上在逐渐减轻,南部及东南部有变干倾向;(3)降水是导致高原区域干湿气候空间格局差异的主要因素,高原干湿气候对潜在蒸散变化的敏感性最强。  相似文献   
19.
矿业是为人类提供赖以生存与发展不可或缺的物质资源的产业,是为经济建设、社会发展、文明进步提供重要物质基础的产业~([1]).人类社会发展到今天,在取得巨大社会进步的同时,对自然环境破坏也是触目惊心的.  相似文献   
20.
青藏高原高寒草原区域碳估测   总被引:16,自引:1,他引:15  
CASA(Carnegie-Ames-Stanford Biosphere)模型是一个表征陆地生态系统水、碳素和氮素通量随时间变化的生态系统过程模型。本研究采用MODIS遥感数据与CASA模型相结合的方法计算了青藏高原高寒草原生态系统植被净初级生产力(NPP)总量为20.57×1012g·a-1的碳。同时根据五道梁实验点上得到的经验关系估算了青藏高原高寒草原生态系统区域上的土壤碳排放(Heterotrophic respiration)总量为8.07×1012 g·a-1,因此推算得高寒草原区域内净生态系统生产力(NEP)折算成碳为12.50×1012 g·a-1。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号