首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   4篇
  国内免费   2篇
测绘学   1篇
大气科学   4篇
地球物理   26篇
地质学   30篇
海洋学   15篇
天文学   13篇
自然地理   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   10篇
  2006年   2篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1974年   1篇
  1972年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
21.
We studied the contributions of plagioclase, clinopyroxene, and amphibole to the P‐wave velocity properties of gabbroic mylonites of the Godzilla Megamullion (site KH07‐02‐D18) in the Parece Vela Rift of the central Parece Vela Basin, Philippine Sea, based on their crystal‐preferred orientations (CPOs), mineral modes, and elastic constants and densities of single crystals. The gabbroic mylonites have been classified into three types based on their microstructures and temperature conditions: HT1, HT2 and medium‐temperature (MT) mylonites. The P‐wave velocity properties of the HT1 mylonite are dominantly influenced by plagioclase CPOs. Secondary amphibole occurred after deformation in the HT1 mylonite, so that its effect on P‐wave velocity anisotropy is minimal due to weak CPOs. Although the HT2 mylonite developed deformation microstructures in the three minerals, the P‐wave velocity properties of the HT2 mylonite are essentially isotropic, resulting from the destructive interference of different P‐wave velocity anisotropy patterns produced by the distinct CPOs of the three constituent minerals (i.e., plagioclase, clinopyroxene, and amphibole). The P‐wave velocity properties of the MT mylonite are influenced mainly by amphibole CPOs, whereas the effect of plagioclase CPOs on P‐wave velocity anisotropy becomes very small with a decrease in the intensity of plagioclase CPOs. As a result, the gabbroic mylonites tend to have weak P‐wave velocity anisotropy in seismic velocity, although their constituent minerals show distinct CPOs. Such weakness in the whole‐rock P‐wave velocity anisotropy could result from the destructive contributions of the different mineral CPOs with respect to the structural framework (foliation and lineation). These results show that amphibole has a high potential for P‐wave velocity anisotropy by aligning both crystallographically and dimensionally during deformation in the hydrous oceanic crust. The results also suggest that the effect of a hydrous phase on P‐wave velocity anisotropy within the detachment shear zone in a slow‐spreading oceanic crust varies depending on the degree of deformation and on the timing of hydrothermal activity.  相似文献   
22.
Yasuhiko Ohara 《Island Arc》2016,25(3):193-208
The Godzilla Megamullion is the largest known oceanic core complex (OCC) on the Earth, located in the Parece Vela Basin in the Philippine Sea. In this article, the history of Godzilla Megamullion study is reviewed for the first time, dividing it into three major phases: (i) the early studies done before Japan's extended continental shelf survey program; (ii) the studies during Japan's extended continental shelf survey program that discovered the OCC; and (iii) the studies by the post‐discovery cruises. The early studies included an interpretation of US nautical chart of the southwestern Pacific and the site surveys for Deep Sea Drilling Project cruises (DSDP Legs 6, 31 and 59). The early studies recognized the presence of the Parece Vela Rift, the extinct spreading axis of the Parece Vela Basin, and established the currently accepted model that the Philippine Sea evolved with eastward progression of backarc spreading and arc migration. The modern understanding of the Parece Vela Basin comes from Japan's extended continental shelf survey program. The program revealed the ultramafic petrology as well as a two‐stage evolution model of the basin. Following these results, the discovery of the Godzilla Megamullion was made in 2001. The studies by the post‐discovery cruises further revealed important characteristics of the OCC, such as the presence of abundant plagioclase‐bearing peridotite and the systematic temporal changes in both deformation microstructures and composition of plagioclase and amphibole in gabbroic mylonites and ultramylonites. Zircon U–Pb ages of gabboric and leucocratic rocks indicate that the terminal phase of Parece Vela Basin spreading was with a significant decline in spreading rate and asymmetry accompanying formation of the Godzilla Megamullion. The estimated denudation rate of the OCC was approximately 2.5 cm/yr; significantly slower than the previous estimate based on poorly constrained magnetic data.  相似文献   
23.
The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough backarc basin in late Neogene time, erupting basalts at 3.7–2.7 Ma that are now exposed in the Southeast Mariana Forearc Rift (SEMFR). Today, SEMFR is a broad zone of extension that formed on hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30–50 km). It comprises NW–SE trending subparallel deeps, 3–16 km wide, that can be traced ≥ ∼30 km from the trench almost to the backarc spreading center, the Malaguana‐Gadao Ridge (MGR). While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly composed of Pliocene, low‐K basaltic to basaltic andesite lavas that are compositionally similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks have low Na8, Ti8, and Fe8, consistent with extensive melting, at ∼23 ± 6.6 km depth and 1239 ± 40°C, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab‐derived fluids. Stretching of pre‐existing forearc lithosphere allowed BAB‐like mantle to flow along the SEMFR and melt, forming new oceanic crust. Melts interacted with pre‐existing forearc lithosphere during ascent. The SEMFR is no longer magmatically active and post‐magmatic tectonic activity dominates the rift.  相似文献   
24.
Summary. The upper boundary of the descending oceanic plate is located by using PS -waves (converted from P to S at the boundary) in the Tohoku District, the north-eastern part of Honshu, Japan. the observed PS-P time data are well explained by a two-layered oceanic plate model composed of a thin low-velocity upper layer whose thickness is less than 10 km and a thick high-velocity lower layer; the upper and lower layers respectively have 6 per cent lower and 6 per cent higher velocity than the overriding mantle. the estimated location of the upper boundary is just above the upper seismic plane of the double-planed deep seismic zone. This result indicates that events in the upper seismic plane, at least in the depth range from 60 to 150 km, occur within the thin low-velocity layer on the surface of the oceanic plate.  相似文献   
25.
Hideo  Takagi 《Island Arc》1992,1(1):92-102
Abstract Mylonites along the Median Tectonic Line, southwest Japan commonly contain shear bands comprising S(-C)-Ss fabrics. This paper stresses the lithologic control on the orientation, dimension and development of shear bands by comparing the microstructure of the shear bands in different rock types (P mylonites, F mylonites, micaceous phyllonite and quartzose phyllonite). There is no significant change of the α angles (average 21–24°) between Ss and S toward the centre of the shear zone (viz. increasing the intensity of mylonitization) and it is different from the S-C relationship in a narrow sense.
The generation of the composite planar fabric can be classified into four different strain partitioning models: S only type without any slip surface (model A); S-C type (model B); S-Ss type with Ss-slip precedence (model C), and S-Ss type with S-slip precedence (model D). Model C is proposed in this paper and is similar to the model for the generation of Riedel shears in brittle shear zones. An unstable slip between porphyroclasts and the matrix during ductile flow can easily initiate shear bands. Formation of a composite planar fabric is initiated according to model A, followed by model C in conditions of increasing strain, and then model D when the angle between S and the shear zone boundary becomes small enough (α/2 = 10°) to produce S-slip. Thus the generation of the shear bands probably begins in the early stages of shear deformation and continues until the latest stages.  相似文献   
26.
Roles of horizontal processes in the formation of the density stratification in Hiuchi-Nada are investigated by means of a two-dimensional numerical model. In Hiuchi-Nada, vertically mixed and stratified regions are formed due to the regional difference of the tidal currents, and a tidal front is formed between the two regions. The horizontal mixing across the tidal front suppresses the development of the stratification, which is developed too much in the absence of the horizontal mixing. The moderate, realistic stratification cannot be realized in the model without the horizontal mixing. Density currents are formed due to the density distribution associated with the mixed and stratified states. These currents contribute to the horizontal mixing through the shear effect. Horizontal heat transfer from the outside water generates the vertical circulation and causes the stratification. This effect dominantly appears at the early and late stages of the stratified season. The stratification is initiated before the beginning of the surface heating and persists beyond the end, due to the horizontal heat transfer.  相似文献   
27.
28.
Recent numerical studies (Hibiya et al., 1996, 1998, 2002) showed that the energy cascade across the internal wave spectrum down to small dissipation scales was under strong control of parametric subharmonic instabilities (PSI) which transfer energy from low vertical mode double-inertial frequency internal waves to high vertical mode near-inertial internal waves. To see whether or not the numerically-predicted energy cascade process is actually dominant in the real deep ocean, we examine the temporal variability of vertical profiles of horizontal velocity observed by deploying a number of expendable current profilers (XCPs) at one location near the Izu-Ogasawara Ridge. By calculating EOFs, we find the observed velocity profiles are dominated by low mode semidiurnal (∼double-inertial frequency) internal tides and high mode near-inertial internal waves. Furthermore, we find that the WKB-stretched vertical scales of the near-inertial current shear are about 250 sm and 100 sm. The observed features are reasonably explained if the energy cascade down to small dissipation scales is dominated by PSI.  相似文献   
29.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   
30.
Boninitic rocks and associated high-magnesian basalt and high-iron tholeiite in the Xiangcheng area constitute the basal horizon of the arc volcanic sequence in the Triassic Yidun Island-Arc, southwestern China. The boninite occurs as pillow, massive and ocellar lavas; the last one possesses well-developed globular structure and alternates with the former two. The boninite is characterized by the absence of phenocrysts of olivine and low-Ca pyroxenes and by low CaO/Al2O3 ratios (<0.67) and high Cr (>1000 ppm) and Ni (>250 ppm). The normalized abundance patterns (NAP) of trace elements to primitive mantle are similar to the NAP of low-Ca modern boninites and SHMB in the Archaean and Proterozoic.As a mechanism of ocellar texture, liquid immiscibility in boninite is supported by the following lines of evidence: (a) sharp contact between ocelli and matrix, (b) constant volumetric ratios of ocelli/matrix and common coalescence of ocelli in ocellar rocks, (c) identical micro-spinifex textures and mineral asse  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号