首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   5篇
大气科学   6篇
地球物理   8篇
地质学   20篇
海洋学   38篇
天文学   1篇
自然地理   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   7篇
  1991年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
61.
The transition region and coronal explorer   总被引:5,自引:0,他引:5  
Handy  B.N.  Acton  L.W.  Kankelborg  C.C.  Wolfson  C.J.  Akin  D.J.  Bruner  M.E.  Caravalho  R.  Catura  R.C.  Chevalier  R.  Duncan  D.W.  Edwards  C.G.  Feinstein  C.N.  Freeland  S.L.  Friedlaender  F.M.  Hoffmann  C.H.  Hurlburt  N.E.  Jurcevich  B.K.  Katz  N.L.  Kelly  G.A.  Lemen  J.R.  Levay  M.  Lindgren  R.W.  Mathur  D.P.  Meyer  S.B.  Morrison  S.J.  Morrison  M.D.  Nightingale  R.W.  Pope  T.P.  Rehse  R.A.  Schrijver  C.J.  Shine  R.A.  Shing  L.  Strong  K.T.  Tarbell  T.D.  Title  A.M.  Torgerson  D.D.  Golub  L.  Bookbinder  J.A.  Caldwell  D.  Cheimets  P.N.  Davis  W.N.  Deluca  E.E.  McMullen  R.A.  Warren  H.P.  Amato  D.  Fisher  R.  Maldonado  H.  Parkinson  C. 《Solar physics》1999,187(2):229-260
The Transition Region and Coronal Explorer (TRACE) satellite, launched 2 April 1998, is a NASA Small Explorer (SMEX) that images the solar photosphere, transition region and corona with unprecedented spatial resolution and temporal continuity. To provide continuous coverage of solar phenomena, TRACE is located in a sun-synchronous polar orbit. The ∼700 Mbytes of data which are collected daily are made available for unrestricted use within a few days of observation. The instrument features a 30-cm Cassegrain telescope with a field of view of 8.5×.5 arc min and a spatial resolution of 1 arc sec (0.5 arc sec pixels). TRACE contains multilayer optics and a lumogen-coated CCD detector to record three EUV wavelengths and several UV wavelengths. It observes plasmas at selected temperatures from 6000 K to 10 MK with a typical temporal resolution of less than 1 min.  相似文献   
62.
 Magnetic and gravimetric data from the central Alboran Sea allow identification of two axes of crustal thinning, which were probably active during the Oligocene–Early Miocene. The western Alboran basin axis is subparallel and may be related in origin to the Gibraltar Arc. The ENE–WSW trending Alboran Channel axis is probably intruded by basic igneous rocks and may represent the western end of the Algerian–Balearic basin rift. Present-day small areas with high heat flow may well be related to volcanism and an anomalous mantle. Areas of active deformation in the Alboran Sea accommodate the present Eurasia-Africa convergence. Received: 17 May 1996 / Revision received: 19 April 1997  相似文献   
63.
The structure of sediments in the Scotia Sea is used as a basis for reconstructing the geological history of its bottom in the Late Quaternary. The Scan Basin is one of the main elements of the topography of the southern Scotia Sea. Its formation played a considerable role in the fragmentation of the continent, which included the Bruce and Discovery banks. The main parameters of the sediment layer in the Scan Basin have been reconstructed by the present time, but its top part has not been studied. In this work, we analyze the first data obtained on the R/V Gesperidas with the use of a TOPAS PS 18/40 high-resolution seismic profilograph in 2012. Three layers in the subsurface sediments on the bottom of the Scan Basin were specified for the first time. The mean periods of their deposition in the Late Quaternary were determined as 115000 years for the first, 76000 years for the second, and 59 000 years for the third layer from the surface of the bottom. The duration of the total accumulation period of the three layers is about 250000 years.  相似文献   
64.
The tectonic evolution of the transition zone from the Pacific Ocean to the Atlantic Ocean is closely linked with the destruction of the American–Antarctic continental bridge in the Scotia Sea. The western segment of the bridge combines the Terror, Pirie, and Bruce banks, as well as the Protector and Dove basins between them. Modeling—primarily based on original geological and geophysical materials—of linear magnetic anomalies and calculation of the floor kinematics in these basins have made it possible for the first time to reveal that the collapse of the western segment of the American–Antarctic continental bridge occurred 18–25 Ma ago via a two-stage separation of the Pirie Rise from the Bruce Rise with the formation of the Dove Basin and a two stage separation of the Terror Rise from the Pirie Rise with the formation of the Protector Basin.  相似文献   
65.
As is common in suture zones, widespread high‐pressure rocks in the Caribbean region reached eclogite facies conditions close to ultrahigh‐pressure metamorphism. Besides eclogite lenses, abundant metapelitic rocks in the Chuacús complex (Guatemala Suture Zone) also preserve evidence for high‐pressure metamorphism. A comprehensive petrological and geochronological study was undertaken to constrain the tectonometamorphic evolution of eclogite and associated metapelite from this area in central Guatemala. The integration of field and petrological data allows the reconstruction of a previously unknown segment of the prograde P–T path and shows that these contrasting rock types share a common high‐pressure evolution. An early stage of high‐pressure/low‐temperature metamorphism at 18–20 kbar and 530–580°C is indicated by garnet core compositions as well as the nature and composition of mineral inclusions in garnet, including kyanite–jadeite–paragonite in an eclogite, and chloritoid–paragonite–rutile in a pelitic schist. Peak high‐pressure conditions are constrained at 23–25 kbar and 620–690°C by combining mineral assemblages, isopleth thermobarometry and Zr‐in‐rutile thermometry. A garnet/whole‐rock Lu‐Hf date of 101.8 ± 3.1 Ma in the kyanite‐bearing eclogite indicates the timing of final garnet growth at eclogite facies conditions, while a Lu‐Hf date of 95.5 ± 2.1 Ma in the pelitic schist reflects the average age of garnet growth spanning from an early eclogite facies evolution to a final amphibolite facies stage. Concordant U‐Pb LA‐ICP‐MS zircon data from the pelitic schist, in contrast, yield a mean age of 74.0 ± 0.5 Ma, which is equivalent to a U‐Pb monazite lower‐intercept age of 73.6 ± 2.0 Ma in the same sample, and comparable within errors with a less precise U‐Pb lower‐intercept age of 80 ± 13 Ma obtained in post‐eclogitic titanite from the kyanite‐bearing eclogite. These U‐Pb metamorphic ages are interpreted as dating an amphibolite facies overprint. Protolith U‐Pb zircon ages of 167.1 ± 4.2 Ma and 424.6 ± 5.0 Ma from two eclogite samples reveal that mafic precursors in the Chuacús complex originated in multiple tectonotemporal settings from the Silurian to Jurassic. The integration of petrological and geochronological data suggests that subduction of the continental margin of the North American plate (Chuacús complex) beneath the Greater Antilles arc occurred during an Albian‐Cenomanian pre‐collisional stage, and that a subsequent Campanian collisional stage is probably responsible of the amphibolite facies overprint and late syncollisional exhumation.  相似文献   
66.
Ten sediment core samples with lengths ranging from 35 to 100 cm were collected in the Baixada Santista region and analyzed to determine As, Br, Co, Cr, Cs, Fe, Rb, Sb, Ta, Th, U, Zn and rare earths (Sc, Ce, Eu, La, Lu, Nd, Sm, Tb and Yb) level concentrations using instrumental neutron activation analysis (INAA). The studied region is located in the southeastern coast of São Paulo State and is comprised of a densely urbanized area, the largest industrial complex of the country, with a predominance of petrochemical and fertilizer plants. It is also home to Brazil’s most important and busiest port. The conclusions found that the As, La, Sm, Ne, Ce, Eu, Hf, Ta, Th, and U elements have a high background level in the region and that Fe and Zn were the main indicators of anthropogenic contribution in the sediments.  相似文献   
67.
The first map of the acoustic basement and the new map of chrons C1-C5E for the region of the East Scotia mid-ocean ridge have been made. The analysis of the maps and the calculations have indicated that the sea-floor spreading at the ridge’s flanks started in its southeast in the interval of chrons C5Er-6An (18.52–20.17 Ma BP). The maximal spreading rate (5.3 cm/year) was in the interval of chrons C5Bn-C5Br (14.78–15.97 Ma BP). Then, the spreading rate was slow and increased again from 3–6 Ma BP until the present. The spreading in the last 1–2 Ma was accompanied by the propagating of the axes southwards in the E1, E2, and E4 segments and northwards in the E8 and E9 segments.  相似文献   
68.
Dove Basin, a small oceanic domain located within the southern Scotia Sea, evidences a complex tectonic evolution linked to the development of the Scotia Arc. The basin also straddles the junction between the main Southern Ocean water masses: the Antarctic Circumpolar Current (ACC), the Southeast Pacific Deep Water (SPDW) and the Weddell Sea Deep Water (WSDW). Analysis of multichannel seismic reflection profiles, together with swath bathymetry data, reveals the main structure and sediment distribution of the basin, allowing a reconstruction of the tectonostratigraphic evolution of the basin and assessment of the main bottom water flows that influenced its depositional development. Sediment dispersed in the basin was largely influenced by gravity‐driven transport from adjacent continental margins, later modified by deep bottom currents. Sediments derived from melting icebergs and extensive ice sheets also contributed to a fraction of the basin deposits. We identify four stages in the basin evolution which – based on regional age assumptions – took place during the early Miocene, middle Miocene, late Miocene–early Pliocene and late Pliocene–Quaternary. The onsets of the ACC flow in Dove Basin during the early Miocene, the WSDW flow during the middle Miocene, and the SPDW during the late Miocene were influenced by tectonic events that facilitated the opening of new oceanic gateways in the region. The analysis of Dove Basin reveals that tectonics is a primary factor influencing its sedimentary stacking patterns, the structural development of new oceanic gateways permitting the inception of deep‐water flows that have since controlled the sedimentary processes.  相似文献   
69.
The brief, terminal Pleistocene archaeological site at Santa Julia (SJ, 31° 50′ S; 71° 45′ W) is the only one with fluted projectile preforms and megafauna consumption known from the Chilean semiarid coastline. Here, we present the climatic history at SJ during the early Holocene reconstructed from pollen and charcoal analyses spanning 13.2–8.6 ka (=103 calibrated 14C yr BP). Elevated charcoal concentrations confirm human activity by 13.2 ka. Human occupation decreased in intensity and charcoal practically disappears from the record after 10.6 ka, followed by wetland expansion at SJ between 10.5 and 9.5 ka. Local dominance of coastal shrubland reveals that dry phases occurred between >11.2–10.5 and 9.5–9.0 ka. Overall, these findings imply that by modulating available resources at both local and landscape levels climate change may have played an important role in explaining the peopling of semiarid coastal Chile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
70.
The Jane Arc and Basin system is located at the eastern offshore prolongation of the Antarctic Peninsula, along the southern margin of the South Orkney Microcontinent. Three magnetic anomaly profiles orthogonal to the main tectonic and bathymetric trends were recorded during the SCAN97 cruise by the Spanish R/V Hespérides. In our profiles, chron C6n (19.5 Ma) was identified as the youngest oceanic crust of the Northern Weddell Sea, whose northern spreading branch was totally subducted. The profiles from the Jane Basin allow us to date, for the first time, the age of the oceanic crust using linear sea floor magnetic anomalies. The spreading in the Jane Basin began around the age of the oldest magnetic anomaly at 17.6 Ma (chron C5Dn), and ended about 14.4 Ma (chron C5ADn). The distribution of the magnetic anomalies indicate that the mechanism responsible for the development of Jane Basin was the subduction of the Weddell Sea spreading centre below the SE margin of the South Orkney Microcontinent, suggesting a novel mechanism for an extreme case of backarc development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号