首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The Ulleung Basin, East Sea/Japan Sea, is a Neogene back-arc basin and occupies a tectonically crucial zone under the influence of relative motions between Eurasian, Pacific and Philippine Sea plates. However, the link between tectonics and sedimentation remains poorly understood in the back-arc Ulleung Basin, as it does in many other back-arc basins as well, because of a paucity of seismic data and controversy over the tectonic history of the basin. This paper presents an integrated tectonostratigraphic and sedimentary evolution in the deepwater Ulleung Basin using 2D multichannel seismic reflection data. The sedimentary succession within the deepwater Ulleung Basin is divided into four second-order seismic megasequences (MS1 to MS4). Detailed seismic stratigraphy interpretation of the four megasequences suggests the depositional history of the deepwater Ulleung Basin occurred in four stages, controlled by tectonic movement, volcanism, and sea-level fluctuations. In Stage 1 (late Oligocene through early Miocene), syn-rift sediment supplied to the basin was restricted to the southern base-of-slope, whereas the northern distal part of the basin was dominated by volcanic sills and lava flows derived from initial rifting-related volcanism. In Stage 2 (late early Miocene through middle Miocene), volcanic extrusion occurred through post-rift, chain volcanism in the earliest time, followed by hemipelagic and turbidite sedimentation in a quiescent open marine setting. In Stage 3 (late middle Miocene through late Miocene), compressional activity was predominant throughout the Ulleung Basin, resulting in regional uplift and sub-aerial erosion/denudation of the southern shelf of the basin, which provided enormous volumes of sediment into the basin through mass transport processes. In Stage 4 (early Pliocene through present), although the degree of tectonic stress decreased significantly, mass movement was still generated by sea-level fluctuations as well as compressional tectonic movement, resulting in stacked mass transport deposits along the southern basin margin. We propose a new depositional history model for the deepwater Ulleung Basin and provide a window into understanding how tectonic, volcanic and eustatic interactions control sedimentation in back-arc basins.  相似文献   

2.
Sea‐level changes provide an important control on the interplay between accommodation space and sediment supply, in particular, for shallow‐water basins where the available space is limited. Sediment exchange between connected basins separated by a subaqueous sill (bathymetric threshold) is still not well understood. When sea‐level falls below the bathymetric level of this separating sill, the shallow‐water basin evolution is controlled by its erosion and rapid fill. Once this marginal basin is filled, the sedimentary depocenter shifts to the open marine basin (outward shift). With new accommodation space created during the subsequent sea‐level rise, sediment depocenter shifts backwards to the marginal basin (inward shift). This new conceptual model is tested here in the context of Late Miocene to Quaternary evolution of the open connection between Dacian and Black Sea basins. By the means of seismic sequence stratigraphic analysis of the Miocene‐Pliocene evolution of this Eastern Paratethys domain, this case study demonstrates these shifts in sedimentary depocenter between basins. An outward shift occurs with a delay that corresponds to the time required to fill the remaining accommodation space in the Dacian Basin below the sill that separates it from the Black Sea. This study provides novel insight on the amplitude and sedimentary geometry of the Messinian Salinity Crisis (MSC) event in the Black Sea. A large (1.3–1.7 km) sea‐level drop is demonstrated by quantifying coeval sedimentation patterns that change to mass‐flows and turbiditic deposits in the deep‐sea part of this main sink. The post‐MSC sediment routing continued into the present‐day pattern of Black Sea rivers discharge.  相似文献   

3.
Although the Neuquén basin in Argentina forms a key transitional domain between the south‐central Andes and the Patagonian Andes, its Cenozoic history is poorly documented. We focus on the sedimentologic and tectonic evolution of the southern part of this basin, at 39–40°30′S, based on study of 14 sedimentary sections. We provide evidence that this basin underwent alternating erosion and deposition of reworked volcaniclastic material in continental and fluvial settings during the Neogene. In particular, basement uplift of the Sañico Massif, due to Late Miocene–Pliocene intensification of tectonic activity, led to sediment partitioning in the basin. During this interval, sedimentation was restricted to the internal domain and the Collon Cura basin evolved towards an endorheic intermontane basin. From stratigraphic interpretation, this basin remained isolated 7–11 Myr. Nevertheless, ephemeral gateways seem to have existed, because we observe a thin succession downstream of the Sañico Massif contemporaneous with the Collon Cura basin‐fill sequence. Comparisons of stratigraphic, paleoenvironmental and tectonic features of the southern Neuquén basin with other foreland basins of South America allow us to classify it as a broken foreland with the development of an intermontane basin from Late Miocene to Late Pliocene. This implies a thick‐skinned structural style for this basin, with reactivation of basement faults responsible for exhumation of the Sañico Massif. Comparison of several broken forelands of South America allows us to propose two categories of intermontane basins according to their structural setting: subsiding or uplifted basins, which has strong implications on their excavation histories.  相似文献   

4.
The Nova Basin contains an upper Miocene to Pliocene supradetachment sedimentary succession that records the unroofing of the Panamint metamorphic core complex, west of Death Valley, California. Basin stratigraphy reflects the evolution of sedimentation processes from landslide emplacement during basin initiation to the development of alluvial fans composed of reworked, uplifted sections of the basin fill. 40Ar/39Ar geochronology of volcanic units in middle and lower parts of the sequence provide age control on the tectonic and depositional evolution of the basin and, more generally, insights regarding the rate of change of depositional environments in supradetachment basins. Our work, along with earlier research, indicate basin deposition from 11.38 Ma to 3.35 Ma. The data imply sedimentation rates, uncorrected for compaction, of ~100 m Myr−1 in the lower, high-energy part to ~1000 m Myr−1 in the middle part characterized by debris-flow fan deposition. The observed variation in sediment flux rate during basin evolution suggests that supradetachment basins have complex depositional histories involving rapid transitions in both the style and rate of sedimentation.  相似文献   

5.
ABSTRACT The tectonic evolution of a collisional hinterland sourcing the Ha?eg Basin, a Late Cretaceous syn‐orogenic sedimentary basin in the South Carpathians (Romania), is revealed through fission track thermochronology of detrital apatite and zircon grains. This basin formed on the upper plate (Getic unit) in response to Late Cretaceous collision with the lower plate (Danubian unit), an allochtonous continental block of the Moesian Platform, upon closure of a narrow oceanic basin (Severin Basin). The fission track results suggest that Turonian to lower Maastrichtian sediments of the Ha?eg Basin have been dominantly derived from pre‐Late Cretaceous sources. The age components they contain relate to pre‐Cretaceous tectonothermal events such as the Variscan orogenic cycle, Jurassic rifting and Severin Basin formation, and to Early Cretaceous compressional tectonics. These results are compatible with the tectonic evolution of the upper plate that is identified as the primary source. From the onset of sedimentation (late Albian) until the early Campanian the Ha?eg Basin resembles a piggy‐back basin formed on the upper plate concomitant with underthrusting and internal stacking of the lower plate. In contrast, important tectonic subsidence during the late Campanian and early Maastrichtian reflects a shift to extensional tectonics causing the unroofing of the collision zone and the exhumation of lower plate rocks back to the surface. Our fission track data place important constraints on the timing of lower plate erosion that must have commenced during the late Maastrichtian, as documented by the completely reset Late Cretaceous age component within upper Maastrichtian sediments (Sînpetru Formation). Late Maastrichtian uplift of the basin and the formation of positive relief at the site of the collision zone is an expression of continuous convergence. The mismatch between the amount of denudation and the amount of sediments trapped in the Ha?eg Basin underlines the importance of concomitant extensional unroofing.  相似文献   

6.
The Austral Basin (or Magallanes Basin) in southern Argentina is situated in a highly active tectonic zone. The openings of the South Atlantic and the Drake Passage to the east and south, active subduction in the west, and the related rise of the Andes have massively influenced the evolution of this area. To better understand the impacts of these tectonic events on basin formation to its present‐day structure we analysed 2D seismic reflection data covering about 95 000 km² on‐ and 115 000 km² offshore (Austral ‘Marina’ and Malvinas Basin). A total of 10 seismic horizons, representing nine syn‐ and post‐ rift sequences, were mapped and tied to well data to analyse the evolution of sedimentary supply and depocenter migration through time. 1D well backstripping across the study area confirms three main tectonic stages, containing (i) the break‐up phase forming basement graben systems and the evolution of the Late Jurassic – Early Cretaceous ancient backarc Austral/Rocas Verdes Basin (RVB), (ii) the inversion of the backarc marginal basin and the development of the foreland Austral Basin and (iii) the recent foreland Austral Basin. Synrift sedimentation did not exceed the creation of accommodation space, leading to a deepening of the basin. During the Early Cretaceous a first impulse of compression due to Andes uplift caused rise also of parts of the basin. Controlling factors for the subsequent tectonic development are subduction, balanced phases of sedimentation, accumulation and erosion as well as enhanced sediment supply from the rising Andes. Further phases of rock uplift might be triggered by cancelling deflection of the plate and slab window subduction, coupled with volcanic activity. Calculations of sediment accumulation rates reflect the different regional tectonic stages, and also show that the Malvinas Basin acted as a sediment catchment after the filling of the Austral Basin since the Late Miocene. However, although the Austral and Malvinas Basin are neighbouring basin systems that are sedimentary coupled in younger times, their earlier sedimentary and tectonic development was decoupled by the Rio Chico basement high. Thereby, the Austral Basin was affected by tectonic impacts of the Andes orogenesis, while the Malvinas Basin was rather affected by the opening of the South Atlantic.  相似文献   

7.
Seismic and stratigraphic data of the inland Volterra Basin and of the Tuscan Shelf (Northern Tyrrhenian Sea) have been analysed to determine the tectono-sedimentary evolution of this part of the Northern Apennines from the early Miocene (about 20 Ma) to the present. The area is a good example for better understanding the evolution of postcollisional related basins. The study area is characterized by a series of sedimentary basins separated by tectonic ridges. Similar environmental conditions existed both onshore and offshore as indicated by the occurrence of similar seismic units. The units are separated by major unconformities. The cross-sectional geometries of the deposits of these basins, as defined through seismic reflection profiles, change in a quasi-regular manner through time and space. Early stages (late Burdigalian to early Tortonian) of evolution of the basins are marked by either flat-lying deposits, quasi-uniform in thickness, probably remnants of originally wider and shallow settings, or, in places, by relatively small bowl-shaped basins. The latter may have been strongly affected by the pre-existing topography and tectonics, as they developed at or near the leading edges of pre-Neogene substrate thrusts. These early deposits represent sedimentation during a transitional period from the end of compressional tectonics to the start of an extensional phase and represent a pre-narrow rift stage of evolution of the region. The subsequent stage of tectonic evolution (late Tortonian to early Messinian), where preserved, is recorded by fault-bounded triangular-shaped basins interpreted as half-grabens. This is one of the periods of major development of narrow rifts in the area. The following stage (late Messinian to Early Pliocene) is marked by variable types of basins, showing wide and deep bowl-shaped geometries persistent in the offshore, whereas inshore (Volterra Basin) they alternate with half-graben, synrift deposits. This period thus represents a transitional stage where part of the system is still affected by synrift sedimentation and part is developing into incipient post-rift conditions. This stage was followed in early to middle Pliocene times by wide bowl-shaped to blanket-type deposits both in offshore and in inshore areas, indicating regional post-rifting conditions. The pre-, syn- and post-rift stages have followed each other through time and space, starting first in the westernmost offshore area and shifting later toward the east, inshore.  相似文献   

8.
In order to evaluate the relationship between thrust loading and sedimentary facies evolution, we analyse the progradation of fluvial coarse‐grained deposits in the retroarc foreland basin system of the northern Andes of Colombia. We compare the observed sedimentary facies distribution with the calculated one‐dimensional (1D) Eocene to Quaternary sediment‐accumulation rates in the Medina wedge‐top basin and with a three‐dimensional (3D) sedimentary budget based on the interpretation of ~1800 km of industry‐style seismic reflection profiles and borehole data. Age constraints are derived from a new chronostratigraphic framework based on extensive fossil palynological assemblages. The sedimentological data from the Medina Basin reveal rapid accumulation of fluvial and lacustrine sediments at rates of up to ~500 m my?1 during the Miocene. Provenance data based on gravel petrography and paleocurrents reveal that these Miocene fluvial systems were sourced from Upper Cretaceous and Paleocene sedimentary units exposed to the west in the Eastern Cordillera. Peak sediment‐accumulation rates in the upper Carbonera Formation and the Guayabo Group occur during episodes of coarse‐grained facies progradation in the early and late Miocene proximal foredeep. We interpret this positive correlation between sediment accumulation and gravel deposition as the direct consequence of thrust activity along the Servitá–Lengupá faults. This contrasts with one class of models relating gravel progradation in more distal portions of foreland basin systems to episodes of tectonic quiescence.  相似文献   

9.
An extensive low‐temperature thermochronology study of the Swiss part of the North Alpine Foreland Basin has been conducted with the aim of deciphering the late Neogene basin development. Apatite fission‐track (AFT) ages from wells located in the distal and weakly deformed Plateau Molasse reveal rapid, km‐scale erosion with an onset in early Pliocene times. The distribution of erosion implies that there was a strong gradient in late Miocene deposition rates along the strike of the basin, with an increase towards the northeast. Additionally, renewed tectonic activity and km‐scale out‐of‐sequence thrusting during Plio‐Pleistocene times is indicated by AFT data from wells within the thrusted, proximal Subalpine Molasse. Several different mechanisms driving late Neogene basin erosion and accelerated erosional discharge from the European Alps have been considered in the literature. Based on our AFT results, we reevaluate previously published hypotheses, and suggest that a change in climate and/or drainage reorganisation coincided and possibly interacted with preexisting tectonic and geodynamic forces in the Alpine region.  相似文献   

10.
The Calabrian-Peloritan Arc (southern Italy) represents a fragment of the European margin, thrusted onto the Apennines and Maghrebides during the Europe-Apulia collision in the late Early Miocene. A reconstruction of the pre-Middle Miocene tectono-sedimentary evolution of the southern part of the Calabrian-Peloritan Arc (CPA) is presented, based on a detailed analysis of the Stilo-Capo ?Orlando Formation (SCO Fm). Deposition of the SCO Fm occurred in a series of mixed-mode piggy-back basins. Basin evolution was controlled by two intersecting fault systems. A NW-SE oriented system delimited a series of sub-basins and fixed the position of feeder channels and submarine canyons, whereas a NE-SW oriented system controlled the axial dispersal of coarse-grained sediments within each of the sub-basins. From base to top, sedimentary environments change from terrestrial and lagoonal to upper bathyal over a timespan of approximately 12 Myr (late Early Oligocene-late Early Miocene). During this interval, extensional tectonic activity alternated with oblique backthrusting events, related to dextral transpression along the NW-SE oriented faults. This produced a characteristic pulsating pattern of basin evolution. Oligocene-Early Miocene evolution of the W. Mediterranean basin was dominated by ‘roll back’ of the Neotethyan oceanic lithosphere. Considerable extension in the overriding European Plate gave rise to the formation of a back arc-thrust system. The initial stages of Calabrian Basin evolution are remarkably similar to the evolution of rift basins in the back arc (Sardinia). The Calabrian basins, which are inferred to have originated as thin-skinned pull-apart basins, were subsequently incorporated into the Apennines-Maghrebides accretionary wedge by out-of-sequence thrusting, and became decoupled from the back arc. Periodic restabilization of the accretionary wedge, resulting in an alternation of backthrusting and listric normal faulting, provides an explanation for the structural evolution of these mixed-mode basins. The basins of the southern part of the CPA may be termed ‘spanner’ or ‘looper’ basins, in view of their characteristic pulsating structural evolution, superimposed upon their migration toward the foreland. This new term adequately accounts for the occurrence of tectonic inversions in long-lived piggy-back basins, as expected in the light of the dynamics of accretionary wedges.  相似文献   

11.
Four Mesozoic–Cenozoic palaeothermal episodes related to deeper burial and subsequent exhumation and one reflecting climate change during the Eocene have been identified in a study of new apatite fission‐track analysis (AFTA®) and vitrinite reflectance data in eight Danish wells. The study combined thermal‐history reconstruction with exhumation studies based on palaeoburial data (sonic velocities) and stratigraphic and seismic data. Mid‐Jurassic exhumation (ca. 175 Ma) was caused by regional doming of the North Sea area, broadly contemporaneous with deep exhumation in Scandinavia. A palaeogeothermal gradient of 45 °C km?1 at that time may be related to a mantle plume rising before rifting in the North Sea. Mid‐Cretaceous exhumation affecting the Sorgenfrei–Tornquist Zone is probably related to late Albian tectonic movements (ca. 100 Ma). The Sole Pit axis in the southern North Sea experienced similar inversion and this suggests a plate‐scale response along crustal weakness zones across NW Europe. Mid‐Cenozoic exhumation affected the eastern North Sea Basin and the onset of this event correlates with a latest Oligocene unconformity (ca. 24 Ma), which indicates a major Scandinavian uplift phase. The deeper burial that caused the late Oligocene thermal event recognized in the AFTA data reflect progradation of lower Oligocene wedges derived from the uplifting Scandinavian landmass. The onset of Scandinavian uplift is represented by an earliest Oligocene unconformity (ca. 33 Ma). Late Neogene exhumation affected the eastern (and western) North Sea Basin including Scandinavia. The sedimentation pattern in the central North Sea Basin shows that this phase began in the early Pliocene (ca. 4 Ma), in good agreement with the AFTA data. These three phases of Cenozoic uplift of Scandinavia also affected the NE Atlantic margin, whereas an intra‐Miocene unconformity (ca. 15 Ma) on the NE Atlantic margin reflects tectonic movements of only minor amplitude in that area. The study demonstrates that only by considering episodic exhumation as an inherent aspect of the sedimentary record can the tectonic evolution be accurately reconstructed.  相似文献   

12.
The Eocene–Miocene carbonate deposition in the Gulf of Papua (GoP) corresponds to the carbonate evolution phase of this continental margin mixed depositional system. Global sea‐level (eustatic) fluctuations appear to have been the most important factor influencing the mixed depositional system development during its carbonate phase. Development of the major carbonate system in the Gulf was initiated during the Eocene. Subsequent to an early Oligocene hiatus, the carbonate system expanded its surface area, vertically aggraded, then systematically backstepped, and finally partially drowned during the late Oligocene–early part of the early Miocene. During the late early Miocene–early middle Miocene, the carbonate system continued its vertical growth in most platform areas, where it was able to keep up with sea‐level rise. At the early middle/late middle Miocene (Langhian/Serravallian) boundary, carbonate deposition shifted downward during a long‐term sea‐level regression, exposing most of the early middle Miocene platform tops. Following this downward shift, active carbonate production became restricted during the late middle Miocene to only the northeastern part of the study area, and carbonate accumulation was characterized by four systematically prograding units. At the very beginning of the late Miocene, the platform tops were re‐flooded. The carbonate system was partially drowned, systematically backstepped, and locally aggraded during part of the late Miocene, the early Pliocene, and the Quaternary. The overall organization of the carbonate sequence geometries, observed in the GoP, display a clear pattern, often referred to as the Oligocene–Neogene stratigraphic signature. This pattern is identical to contemporaneous sedimentary patterns observed in pure carbonate systems such as in the Maldives and in the Bahamas, and also in some siliciclastic systems. Because this pattern is observed in several globally distributed locations, the recognition of the Oligocene–Neogene stratigraphic signature in the GoP demonstrates that the depositional evolution during the late Oligocene–Miocene and the early Pliocene must have been dominantly controlled by eustatic fluctuations.  相似文献   

13.
The Sassa‐Guardistallo Basin (SGB) is located close to the Tyrrhenian Sea and represents one of the most internal Neogene–Quaternary hinterland basins of the Northern Apennines fold‐and‐thrust belt. Its sedimentary succession consists of ca. 400‐m‐thick Late Tortonian–Messinian continental – largely conglomeratic – units overstepping a mainly shaly substratum (Palombini Shales) and overlain by Late Messinian evaporites and marine to continental Pliocene–Pleistocene sediments. This stratigraphic succession can be approximated to a composite rheological multilayer that dictated the style of basin deformation. Detailed geological mapping and structural analysis revealed that basin deposits were affected by compressional deformations that can be found both at map and outcrop scales. Decametric splay thrusts emanating from the substratum–conglomerate interface locally double the continental succession and are bounded by a roof thrust along the Late Messinian evaporite décollement, defining a deformation pattern consistent with a duplex‐like structure. The time–space structural evolution of the basin inferred from the fieldwork was addressed and tested by analogue modelling that approximated the rheological stratification of the study area to a layered brittle–ductile system. The model results support the hypothesis that the evolution of the thrust system affecting the SGB started as an early floor imbricate fan thrust system that successively evolved to a duplex structure as the link thrusts propagated into the upper décollement layer that resulted from the deposition of the Late Messinian evaporites. Models display many structural features that may be compared with the natural prototype, and highlight the importance of syntectonic sedimentation in the development and evolution of tectonic structures. The results of this study retain relevant implications for the Neogene evolution of the Tyrrhenian Basin–Northern Apennines system. This study also supports that combining between field structural analyses and analogue modelling can give useful hints into the evolutionary history of tectonically complex areas.  相似文献   

14.
淮河作为中国7大江河之一,有关其形成时代的研究相对匮乏且存在较大的争议。论文通过梳理淮河流域内已有的研究工作,综合层状地貌面和沉积地层记录探讨了淮河不同河段的形成时代。新生代期间,淮河流域内的水系曾经历2次较大的调整,分别发生在古近纪末和上新世末。古近纪和新近纪期间,淮河流域曾广泛发育湖泊沉积,以河湖相沉积环境为主。而第四纪期间,流域内古地理环境逐渐过渡为以河流相沉积环境为主。现代淮河河湖体系的形成发生在早至中更新世,其后经历不断的演变至今。构造活动和气候变化是驱动淮河流域水系演变的主因。上新世末至早更新世初的青藏运动导致了淮河流域内新近纪水文体系的解体,而晚新生代以来气候的转冷可能是湖泊萎缩、河流作用增强的诱因。  相似文献   

15.
Tertiary extension in the Aegean region has led to extensional detachment faulting, along which metamorphic core complexes were exhumed, among which is the Early to Middle Miocene South Aegean core complex. This paper focuses on the supradetachment basin developed during the final stages of exhumation of the South Aegean core complex along the Cretan detachment, plus the Late Miocene to Pliocene basin development and palaeogeography associated with the southward motion of Crete during the opening of the Aegean arc. For the latter purpose, the sedimentary and palaeobathymetric evolutions of a large number of Middle Miocene to Late Pliocene sequences exposed on Crete, Gavdos and Koufonisi were studied. The supradetachment basin development of Crete is characterised by a break‐up of the hanging wall of the Cretan detachment into extensional klippen and subsequent migration of laterally coexisting sedimentary systems, and finally the deformation of the exhumed core complex by processes related to the opening of the Aegean arc. Hence, three main tectonic phases are recognised: (1) Early to Middle Miocene N–S extension formed during the Cretan detachment, exhumed in the South Aegean core complex. The Cretan detachment remained active until 11–10 Ma, based on the oldest sediments that unconformably overlie the metamorphic rocks. Successions older than 11–10 Ma unconformably overlie only the hanging wall of the Cretan detachment, and do not contain fragments of the footwall rocks; they therefore predate the oldest exposure of the metamorphic rocks of the footwall. The hanging wall rocks and Middle Miocene sediments form isolated blocks on top of the exhumed metamorphic rocks, which are interpreted as extensional klippen. (2) From approximately 10 Ma onward, southward migration of the area that presently covers Crete was accompanied by E–W extension, and the opening of the Sea of Crete to the north. Contemporaneously, large folds with WNW–ESE striking, NNE dipping axial planes developed, possibly in response to sinistral transpression. (3) During the Pliocene, Crete emerged and tilted to the NNW, probably as a result of left‐lateral transpression in the Hellenic fore‐arc, induced by the collision with the African promontory.  相似文献   

16.
A multidisciplinary approach, combining sediment petrographic, palynological and thermochronological techniques, has been used to study the Miocene‐Pliocene sedimentary record of the evolution of the Venezuelan Andes. Samples from the Maracaibo (pro‐wedge) and Barinas (retro‐wedge) foreland basins, proximal to this doubly vergent mountain belt, indicate that fluvial and alluvial‐fan sediments of similar composition were shed to both sides of the Venezuelan Andes. Granitic and gneissic detritus was derived from the core of the mountain belt, whereas sedimentary cover rocks and uplifted foreland basin sediments were recycled from its flanks. Palynological evidence from the Maracaibo and Barinas basins constrains depositional ages of the studied sections from late Miocene to Pliocene. The pollen assemblages from the Maracaibo Basin are indicative of mountain vegetation, implying surface elevations of up to 3500–4000 m in the Venezuelan Andes at this time. Detrital apatite fission‐track (AFT) data were obtained from both stratigraphic sections. In samples from the Maracaibo basin, the youngest AFT grain‐age population has relatively static minimum ages of 5 ± 2 Ma, whereas for the Barinas basin samples AFT minimum ages are 7 ± 2 Ma. With exception of two samples collected from the Eocene Pagüey Formation and from the very base of the Miocene Parángula Formation, no evidence for resetting and track annealing in apatite due to burial heating in the basins was found. This is supported by rock‐eval analyses on organic matter and thermal modelling results. Therefore, for all other samples the detrital AFT ages reflect source area cooling and impose minimum age constraints on sediment deposition. The main phase of surface uplift, topography and relief generation, and erosional exhumation in the Venezuelan Andes occurred during the late Miocene to Pliocene. The Neogene evolution of the Venezuelan Andes bears certain similarities with the evolution of the Eastern Cordillera in Colombia, although they are not driven by exactly the same underlying geodynamic processes. The progressive development of the two mountain belts is seen in the context of collision of the Panama arc with northwestern South America and the closure of the Panama seaway in Miocene times, as well as contemporaneous movement of the Caribbean plate to the east and clock‐wise rotation of the Maracaibo block.  相似文献   

17.
通过分析中国第28次南极考察队于2011年12月至2012年1月在南极半岛北端周边海域获得的5条断面CTD观测温盐剖面数据, 进一步认识了该海域的水团组成和水交换情况。观测区域南部的鲍威尔海盆及周边深海区, 可以观测到保持了较显著高温核心的威德尔深层水、密度大于28.27 kg·m-3的威德尔海深层水以及温度低于-0.7 ℃的威德尔海底层水。周边陆坡上的威德尔海深层水则表现出因与周围水体发生混合而核心性质减弱的特征。在菲利普海岭、埃斯佩里兹海槽等复杂地形处, 观测到的对应于威德尔海深层水深度的混合与热盐入侵过程更为显著。威德尔海深层水能够到达南设得兰群岛以北的象岛东北面海域, 但是高盐核心加深至1 500 db, 并上覆温度基本不变但盐度随深度显著增大的较暖水体, 表明威德尔海深层水经历了不同的路径和变性过程。布兰斯菲尔德海峡中没有绕极深层水大规模侵入的迹象, 但是乔治王岛周边陆架上可能存在涡旋等中尺度过程, 会影响德雷克海峡与布兰斯菲尔德海峡之间的水交换。  相似文献   

18.
A three‐dimensional quantitative stratigraphic forward model is employed to investigate the controls leading to the Messinian events in the lacustrine Pannonian Basin of Central Paratethys, and the link between the Messinian salinity crisis in the Mediterranean and the late Miocene‐Pliocene stratigraphy of the Pannonian Basin. Subsurface geological data show that a prominent unconformity surface formed during Messinian time in the Pannonian Basin associated with a sudden forced regression, abrupt basinward shift of facies and a subsequent, prolonged lowstand normal regression. The lowstand prograding series filled up the shallow basin fast, while, at the same time, the marginal areas of the basin were subject to tectonic inversion. The Dionisos program used in this research is built on a nonlinear water‐driven sediment diffusion process, and it employs multiple sediment classes, basin flexure and compaction. Four different scenarios were built in the experiments to test possible basin histories with different rates and timing of tectonic inversion. Each scenario was modelled in two versions: including and not including a lake‐level fall in the Messinian. The results confirm that the Pannonian Basin in the study area has undergone a tectonic inversion since the Messinian, although the exact rates of uplift at different locations remain uncertain. The unconformity and the observed stratigraphic architecture and facies pattern could be modelled adequately only in the versions that applied a Messinian lake‐level fall. Our research concludes that the Messinian unconformity in the Pannonian Basin was caused by an absolute lake‐level drop, likely linked to the desiccation of the Mediterranean, followed by subsidence and normal regression in the basin centre and concomitant tectonic inversion and uplift along the basin margins.  相似文献   

19.
黔中乌当盆地阶地沉积特征及其对盆地演化的指示   总被引:1,自引:0,他引:1  
蒋玺  陈文奇  宁凡  郑军  罗维均  周涌 《地理研究》2020,39(6):1242-1254
黔中乌当盆地是贵州省山间盆地的典型代表,四级河流阶地清晰地记录了新构造运动中区域地壳抬升和盆地演化。通过阶地沉积物砾组统计、粒度分析、光释光(OSL)测年,探讨盆地的发育和演化。结果显示,阶地砾石排列指示盆地水系古流向与现代河流基本一致,砾石磨圆度变化大,分选较差,岩性继承了区域地层。砾石组合特征反映了构造抬升期盆地内强烈的冲刷剥蚀。漫滩沉积物粒度表明盆地在稳定阶段河流水动力整体呈增大趋势。T4和T3发育阶段区域以冲刷剥蚀为主并塑造了盆地雏形。T2阶地沉积特征及测年结果(177.4 ka~87.6 ka)表明中更新世末期持续数万年的沉积夷平作用使盆地基本成型。T1阶地形成时代约25ka,指示了黔中地区最近一次构造抬升和盆地的最终定型。  相似文献   

20.
This paper describes the evolution of an extensional basin in regard to the nature and sequence stratigraphic arrangement of its carbonate deposits. The purpose of this study is to evaluate the respective effects of tectonism, eustasy, climate and oceanography on a carbonate sedimentary record. The case study is the early to mid‐Jurassic age carbonate succession of the Southern Provence Sub‐basin (SE France), located within the southern part of the extensional Western European Tethyan Margin. This work is based on sedimentologic, biostratigraphic (using ammonites and brachiopods) and sequence stratigraphic analysis of the carbonate facies of the Cherty Reddish Limestone Formation (late Sinemurian to earliest Bajocian). These strata were deposited in shoreface to lower offshore depositional environments. The succession of the various environments together with the recognition of key stratigraphic surfaces allow us to define four second‐order depositional sequences; of late Sinemurian to earliest Pliensbachian, early Pliensbachian to late Pliensbachian, earliest Toarcian to middle Aalenian and late Aalenian to early Bathonian ages. The architecture of the depositional sequences (thickness and facies variations within the systems tracts, wedge‐shaped geometries) reflects a strong tectonic control. The sub‐basin was structured by extensional faults (oriented approximately 070–090/250–270). Sea‐level variations, fluctuations in carbonate production and preservation, and environmental changes were also significant controlling factors of the carbonate deposition. The interplay of the tectonic control with the other factors resulted in five main phases in the sedimentary evolution of the sub‐basin: (1) dominant tectonic control during the initial rifting stage (late Sinemurian to early Pliensbachian); (2) increasing extensional tectonics (mid‐Pliensbachian); (3) global climato‐eustatic sea‐level fall (latest Pliensbachian) and global climato‐eustatic sea‐level rise plus hypoxia/anoxia (early Toarcian); (4) relative sea‐level fall linked to tectonic uplift related to the ‘Mid‐Cimmerian phase’ (mid‐Aalenian) and (5) oceanographic events (upwelling) and reduction in carbonate production (hypoxia/anoxia) plus tectonic downwarping (late Aalenian/earliest Bajocian).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号