首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   4篇
  国内免费   2篇
大气科学   8篇
地球物理   56篇
地质学   50篇
海洋学   40篇
天文学   25篇
综合类   2篇
自然地理   13篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   1篇
  2014年   8篇
  2013年   6篇
  2012年   9篇
  2011年   4篇
  2010年   7篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   7篇
  1994年   4篇
  1993年   6篇
  1992年   4篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有194条查询结果,搜索用时 890 毫秒
41.
This study reports measurements of the Raman spectra of Lake Baikal gas hydrates and estimations of the hydration number of methane-rich samples. The hydration number of gas hydrates retrieved from the southern Baikal Basin (crystallographic structure I) was approx. 6.1. Consistent with previous results, the Raman spectra of gas hydrates retrieved from the Kukuy K-2 mud volcano in the central Baikal Basin indicated the existence of crystallographic structures I and II. Measurements of the dissociation heat of Lake Baikal gas hydrates by calorimetry (from the decomposition of gas hydrates to gas and water), employing the hydration number, revealed values of 53.7–55.5?kJ?mol–1 for the southern basin samples (structure I), and of 54.3–55.5?kJ?mol–1 for the structure I hydrates and 62.8–64.2?kJ?mol–1 for the structure II hydrates from the Kukuy K-2 mud volcano.  相似文献   
42.
Thermal measurements and hydrate mapping in the vicinity of the K-2 mud volcano in Lake Baikal have revealed a particular type of association of thermal anomalies (29–121?mW?m–2) near hydrate-forming layers. Detailed coring within K-2 showed that hydrates are restricted to two distinct zones at sub-bottom depths exceeding 70–300?cm. Temperature data from stations with hydrate recovery and degassing features all display low thermal gradients. Otherwise, the thermal gradients within the mud volcano are generally increased. These findings imply a more complicated thermal regime than often assumed for mud volcanoes, with important roles for both fluids and hydrates. The coexistence of neighbouring low and high thermal anomalies is interpreted to result from discharging and recharging fluid activity, rather than hydrate thermodynamics. It is suggested that hydrates play a key role in controlling the fluid circulation pattern at an early stage. At a later stage, the inflow of undersaturated lake water would favour the dissolution of structure I hydrates and the formation of structure II hydrates, the latter having been observed on top of structure I hydrates in the K-2 mud volcano.  相似文献   
43.
The Tibetan Plateau is a key factor in controlling the present‐day climate and atmospheric circulation pattern in Asia. The pattern of atmospheric circulation after the uplift of the plateau is well known, whereas direct evidence is lacking regarding the nature of the circulation pattern prior to the uplift. The distribution of desert directly reflects the position of the subtropical high‐pressure belt, and the prevailing surface‐wind pattern recorded in desert deposits reveals the position of its divergence axis. Cretaceous eolian sandstone of the Phu Thok Formation is extensively exposed in the northern Khorat Basin, northeastern Thailand. We conducted a sedimentological study on this formation to reconstruct temporal changes in the latitude of the subtropical high‐pressure belt in low‐latitude Asia during the Cretaceous. Spatio‐temporal changes in the paleo‐wind directions recorded in the Phu Thok Formation reveal that the Khorat Basin mainly belonged to the northeast trade wind belt and subtropical high‐pressure belt was situated to the north of the Khorat Basin during the initial stages of deposition, shifted southward to immediately above the basin during the main phase of deposition, and then shifted northward again to the north of the basin during the final stages of deposition. The paleomagnetic polarity sequence obtained for the Phu Thok Formation comprises three zones of normal polarity and two of reversed polarity, correlating to chrons M1n to C34n of the geomagnetic polarity time scale. This result suggests that the Phu Thok Formation is mid‐Cretaceous in age (from c. 126 Ma to c. 99–93 Ma), similar to the age of eolian sandstone in the Sichuan Basin, southern China (the Jiaguan Formation). These results, in combination with paleo‐wind direction data, suggest the development of low‐latitude desert and an equatorward shift of the subtropical high‐pressure belt (relative to the present‐day) in Asia during the mid‐Cretaceous.  相似文献   
44.
The signal measured by heave–pitch–roll directional wave buoys yields the first four coefficients of a Fourier series. Data adaptive methods must be employed to estimate a directional wave spectrum. Marine X-band radars (MRs) have the advantage over buoys that they can measure “model-free” two-dimensional (2D) wave spectra. This study presents the first comprehensive validation of MR-derived multi-directional wave characteristics. It is based on wave data from the 2010 Impact of Typhoons on the Ocean in the Pacific (ITOP) experiment in the Philippine Sea, namely MR measurements from R/V Roger Revelle, Extreme Air–Sea Interaction (EASI) buoy measurements, as well as WAVEWATCH-III (WW3) modeling results. Buoy measurements of mean direction and spreading as function of frequency, which do not require data adaptive methods, are used to validate the WW3 wave spectra. An advanced MR wave retrieval technique is introduced that addresses various shortcomings of existing methods. Spectral partitioning techniques, applied to MR and WW3 results, reveal that multimodal seas are frequently present. Both data sets are in excellent agreement, tracking the evolution of up to 4 simultaneous wave systems over extended time periods. This study demonstrates MR’s and WW3’s strength at measuring and predicting 2D wave spectra in swell-dominated seas.  相似文献   
45.
Multidisciplinary surveys were conducted to investigate gas seepage and gas hydrate accumulation on the northeastern Sakhalin continental slope (NESS), Sea of Okhotsk, during joint Korean–Russian–Japanese expeditions conducted from 2003 to 2007 (CHAOS and SSGH projects). One hundred sixty-one gas seeps were detected in a 2000 km2 area of the NESS (between 53°45′N and 54°45′N). Active gas seeps in a gas hydrate province on the NESS were evident from features in the water column, on the seafloor, and in the subsurface: well-defined hydroacoustic anomalies (gas flares), side-scan sonar structures with high backscatter intensity (seepage structures), bathymetric structures (pockmarks and mounds), gas- and gas-hydrate-related seismic features (bottom-simulating reflectors, gas chimneys, high-amplitude reflectors, and acoustic blanking), high methane concentrations in seawater, and gas hydrates in sediment near the seafloor. These expressions were generally spatially related; a gas flare would be associated with a seepage structure (mound), below which a gas chimney was present. The spatial distribution of gas seeps on the NESS is controlled by four types of geological structures: faults, the shelf break, seafloor canyons, and submarine slides. Gas chimneys that produced enhanced reflection on high-resolution seismic profiles are interpreted as active pathways for upward gas migration to the seafloor. The chimneys and gas flares are good indicators of active seepage.  相似文献   
46.
The investigations were carried out at 6 tidal flats located on the eastern part of the Seto Inland Sea, Japan. This study was focused on physical characteristics of sediments, namely as particle size of sediment and difference in elevation, and generalizes the relationship between sediments and macrobenthos. A total of 192 species were collected at 187 stations at 6 tidal flats. Physical characteristics of sediment were classified into 9 groups by cluster analysis in relation to sediment particle size and difference in elevation. Those groups had also significant difference in physical characteristics of sediments, and were characterized by some specific macrobenthos species. Distribution of macrobenthos can be explained by the classification of physical characteristics of sediment. These findings show the possibility to predict the variety of macrobenthos community using the physical characteristics of sediment.  相似文献   
47.
48.
49.
The Yonaguni Knoll IV hydrothermal vent field (24°51′N, 122°42′E) is located at water depths of 1370–1385 m near the western edge of the southern Okinawa Trough. During the YK03–05 and YK04–05 expeditions using the submersible Shinkai 6500, both hydrothermal precipitates (sulfide/sulfate/carbonate) and high temperature fluids (Tmax = 328°C) presently venting from chimney‐mound structures were extensively sampled. The collected venting fluids had a wide range of chemistry (Cl concentration 376–635 mmol kg?1), which is considered as evidence for sub‐seafloor phase separation. While the Cl‐enriched smoky black fluids were venting from two adjacent chimney‐mound structures in the hydrothermal center, the clear transparent fluids sometimes containing CO2 droplet were found in the peripheral area of the field. This distribution pattern could be explained by migration of the vapor‐rich hydrothermal fluid within a porous sediment layer after the sub‐seafloor phase separation. The collected hydrothermal precipitates demonstrated a diverse range of mineralization, which can be classified into five groups: (i) anhydrite‐rich chimneys, immature precipitates including sulfide disseminations in anhydrite; (ii) massive Zn‐Pb‐Cu sulfides, consisting of sphalerite, wurtzite, galena, chalcopyrite, pyrite, and marcasite; (iii) Ba‐As chimneys, composed of barite with sulfide disseminations, sometimes associated with realgar and orpiment overgrowth; (iv) Mn‐rich chimneys, consisting of carbonates (calcite and magnesite) and sulfides (sphalerite, galena, chalcopyrite, alabandite, and minor amount of tennantite and enargite); and (v) pavement, silicified sediment including abundant native sulfur or barite. Sulfide/sulfate mineralization (groups i–iii) was found in the chimney–mound structure associated with vapor‐loss (Cl‐enriched) fluid venting. In contrast, the sulfide/carbonate mineralization (group iv) was specifically found in the chimneys where vapor‐rich (Cl‐depleted) fluid venting is expected, and the pavement (group v) was associated with diffusive venting from the seafloor sediment. This correspondence strongly suggests that the subseafloor phase separation plays an important role in the diverse range of mineralization in the Yonaguni IV field. The observed sulfide mineral assemblage was consistent with the sulfur fugacity calculated from the FeS content in sphalerite/wurtzite and the fluid temperature for each site, which suggests that the shift of the sulfur fugacity due to participation of volatile species during phase separation is an important factor to induce diverse mineralization. In contrast, carbonate mineralization is attributed to the significant mixing of vapor‐rich hydrothermal fluid and seawater. A submarine hydrothermal system within a back‐arc basin in the continental margin may be considered as developed in a geologic setting favorable to a diverse range of mineralization, where relatively shallow water depth induces sub‐seafloor phase separation of hydrothermal fluid, and sediment accumulation could enhance migration of the vapor‐rich hydrothermal fluid.  相似文献   
50.
The seasonal intensive sampling of gases and particulate matter in ambient air was conducted at the site established in urban area of Japan to study the seasonal difference of the temporal variation of gases and particulate matter concentrations in urban atmosphere as well as to illustrate the different transport regimes that impacts air pollutants. The sample was collected by the four-stage filter-pack method with 6-h interval for one week in four seasons (spring, summer, autumn and winter). The trans-boundary transport of air pollutants with high concentration was characteristically observed in the spring sampling. On the other hand, we could successfully detect the in-country transports of air pollutants in the summer sampling. Four-season’s intensive survey considered, we could show the characteristic transport of air pollutants to provide the episodic high concentration for ambient air in the urban area of Japan, and successfully illustrate the seasonal-dependent transport regimes to impact on air pollutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号