首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   6篇
  国内免费   1篇
测绘学   4篇
大气科学   10篇
地球物理   28篇
地质学   54篇
海洋学   12篇
天文学   6篇
综合类   1篇
自然地理   22篇
  2022年   5篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   4篇
  2009年   11篇
  2008年   6篇
  2007年   8篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1997年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
71.
Critical zone influences on hydrologic partitioning, subsurface flow paths and reactions along these flow paths dictate the timing and magnitude of groundwater and solute flux to streams. To isolate first‐order controls on seasonal streamflow generation within highly heterogeneous, snow‐dominated basins of the Colorado River, we employ a multivariate statistical approach of end‐member mixing analysis using a suite of daily chemical and isotopic observations. Mixing models are developed across 11 nested basins (0.4 to 85 km2) spanning a gradient of climatological, physical, and geological characteristics. Hydrograph separation using rain, snow, and groundwater as end‐members indicates that seasonal contributions of groundwater to streams is significant. Mean annual groundwater flux ranges from 12% to 33% whereas maximum groundwater contributions of 17% to 50% occur during baseflow. The direct relationship between snow water equivalent and groundwater flux to streams is scale dependent with a trend toward self‐similarity when basins exceed 5.5 km2. We find groundwater recharge increases in basins of high relief and within the upper subalpine where maximum snow accumulation is coincident with reduced conifer cover and lower canopy densities. The mixing model developed for the furthest downstream site did not transfer to upstream basins. The resulting error in predicted stream concentrations points toward weathering reactions as a function of source rock and seasonal shifts in flow path. Additionally, the potential for microbial sulfate reduction in floodplain sediments along a low‐gradient, meandering portion of the river is sufficient to modify hillslope contributions and alter mixing ratios in the analysis. Soil flushing in response to snowmelt is not included as an end‐member but is identified as an important mechanism for release of solutes from these mountainous watersheds. End‐member mixing analysis used in combination with high‐frequency observations reveals important aspects of catchment hydrodynamics across scale.  相似文献   
72.
73.
Reducing uncertainty in global temperature reconstructions of the past millennium remains the key issue in applying this record to society’s pressing climate change problem. Reconstructions are collaborative, built on the research of hundreds of scientists who apply their diverse scientific expertise and field and laboratory skill to create the individual proxy reconstructions that underlie the multi-proxy, global average temperature time series. Web 2.0 features have enabled collaborative efforts that improve the characterization of uncertainty. Raw data shared via a repository (the World Data Center for Paleoclimatology) enable new reconstructions from the collection of user-generated data. Standards propagated by expert communities facilitate quality control and interoperability. Open access to data and computer code promote transparency and make the science accessible to a broader audience. Blogs, wikis, and listservs share background information and highlight contentious as well as unique aspects of paleo science. A novel approach now underway, titled the Paleoclimate Reconstruction Challenge, and based on the sharing of simulated data (pseudo-proxies) and reconstruction results, seeks to facilitate method development, further reducing uncertainty. Broadly-useful aspects of the Challenge may find application in other fields.  相似文献   
74.
Hydrogeology Journal - The hydraulic conductivity of jointed rocks is one of the main input parameters to predict water inflow to engineering structures that are located in the jointed rocks....  相似文献   
75.
76.
Emerald ash borer (EAB) (Agrilus planipennis Fairmaire), an invasive forest insect first identified in southeastern Michigan in 2002, is established in at least 32 US states and three Canadian provinces. Ash (Fraxinus spp.) mortality rates in some forested areas exceed 90%, but to date, little is known about the potential effects of EAB-caused ash mortality on hydrological processes. More broadly, there is a need for information on the timing and magnitude of soil moisture response to species-specific mortality of overstory vegetation in deciduous forest systems. Soil moisture was examined in 28 forested sites where 0–100% of the white ash basal area (Fraxinus americana L.) was killed by EAB. Synoptic measurements of near-surface (0–6 cm depth) soil moisture were collected from 112 plots (18 m radius) within the sites. Three plots were also instrumented with soil moisture sensors at 10 and 25 cm depth to log hourly measurements from May to October. Synoptic data showing white ash mortality and soil moisture were positively correlated in the 34 plots with ≥?5% mortality (by total basal area). In the intensively monitored plots, volumetric soil moisture declined from 37 to 16% between July and September where white ash mortality was low (0.6% of basal area killed), but remained near field capacity (~?30%) throughout the monitoring period in the high mortality plot (8.6% of basal area killed), meriting further investigation to assess effects of white ash mortality on evapotranspiration and soil moisture dynamics in heterogeneous upland forests. Altered soil moisture may have implications for regrowth dynamics, infiltration/runoff partitioning, and nutrient cycling, but additional study to quantify the extent and duration of EAB-related ash mortality on hydrology at the plot and watershed scale is necessary.  相似文献   
77.
A large number of the landslide dams located on the major rivers at the southeastern margin of the Tibetan Plateau have been previously identified through remote sensing analysis and field investigations. The Xuelongnang paleolake was one of the lakes formed by these landslide dams in the upper Jinsha River, where the association of a relict landslide dam, lacustrine sediment, and outburst sediment is well preserved. This preservation provides an opportunity to better understand the formation, evolution, and longevity of a large landslide-dammed lake in the upper Jinsha River. It was inferred that the Xuelongnang dammed lake may have been formed by an earthquake-induced paleoavalanche. The surface area of the lake at its peak was estimated at 7.0?×?106 m2, and the corresponding volume was approximately 3.1?×?108 m3. Two outburst flood events were determined to have occurred during the life span of the lake. Based on the 18 ages obtained from optically stimulated luminescence (OSL) and carbon-14 (14C) dating combined with stratigraphic sequences observed in the field, the paleolandslide-dammed lake was formed at approximately 2.1 ka and subsequently breached locally. The dammed lake was sustained for a period of some 900 years based on the chronological constraining. This study confirms that a major landslide-dammed lake can be sustained for at least hundreds of years and breached by several dam breaks in multiple periods, which contributed to the preservation of the knickpoints at millennial scale along the major rivers in the study area.  相似文献   
78.
79.
The specific catalytic effect of a silica grain on the formation of methanol via the sequential addition of H atoms to CO adsorbed on the surface is investigated. A negatively charged defect on a siliceous edingtonite surface is found to reduce the gas phase barriers for the H + COads and H + H2C=Oads reactions by 770 and 399 K, respectively, when compared to the same reactions in the gas phase. The catalytic effect of negatively charged surface sites could also be applicable to the hydrogenation of other adsorbed unsaturated species. However, the activation energies on the surface defect are still too large (1150 and 2230 K) for CH3OH to form efficiently at 10–20 K in the interstellar medium via a classical mechanism. It is therefore suggested that quantum mechanical tunnelling through the activation barrier is required for these hydrogen addition reactions to proceed at such temperatures. The calculations show that because the adsorption energies of CO and H2C=O on the negatively charged defect are substantial, CH3OH may form efficiently during the warm-up period in star-forming regions.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号