首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   6篇
  国内免费   2篇
测绘学   6篇
大气科学   8篇
地球物理   52篇
地质学   132篇
海洋学   16篇
天文学   7篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   9篇
  2016年   10篇
  2015年   9篇
  2014年   11篇
  2013年   25篇
  2012年   16篇
  2011年   15篇
  2010年   8篇
  2009年   20篇
  2008年   9篇
  2007年   19篇
  2006年   11篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   9篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1940年   1篇
  1934年   3篇
排序方式: 共有230条查询结果,搜索用时 31 毫秒
21.
We present a sequence of purely advective transport models that demonstrate the influence of small-scale geometric inhomogeneities on contaminant transport in fractured crystalline rock. Special weight is placed on the role of statistically generated variable fracture apertures. The fracture network geometry and the aperture distribution are based on information from an in situ radionuclide retardation experiment performed at Grimsel test site (Swiss Alps). The obtained breakthrough curves are fitted with the advection dispersion equation and continuous-time random walks (CTRW). CTRW is found to provide superior fits to the late-arrival tailing and is also found to show a good correlation with the velocity distributions obtained from the hydraulic models. The impact of small-scale heterogeneities, both in fracture geometry and aperture, on transport is shown to be considerable.  相似文献   
22.
Humans constitute one of the main geomorphological agents in modern times. As an example, post-mining regions represent a typical landscape of the Anthropocene. Strong relief modifications are particularly obvious with open pit mining. However, many existing mining areas are lacking detailed pre-mining information for the quantification of anthropogenic relief changes, which is a considerable challenge in regions with historic mining activities. Here, the Ville (Rhenish lignite district, Germany) is used to quantify surface mining induced relief changes in one of the oldest and currently largest lignite districts in Europe. Historical maps from first geodetic mapping in 1893 enabled construction of a historic digital elevation model to quantify the relief changes in comparison to elevation data from 2000 and 2015. The vertical accuracy of the historic data is remarkably high, with relief differences < 2 m in areas not affected by mining. In total, 49.2% of the investigated area (184 km2) shows a relief deficit and 14.5% has positive relief differences. Absolute changes account for more than 80 m heightening (dumpsites of overburden) and lowering of the natural relief (pits). Besides these altitudinal changes, overall steeper slopes are significant for the new topography, but levelling exists likewise. The spatial variabilities are discussed in the context of the regional geology and the mining techniques. Undoubtedly, such large-scale anthropogenic relief changes persist for a very long time and will last as a human legacy far into the future. Only the detailed reconstruction of the pre-mining relief offers the ability to clarify the dimension of humans as geomorphological agents and to understand landscape perception. Due to the fact that the impact of open pit mining has such a large vertical and horizontal extension, their consideration as part of anthropogeomorphology can significantly contribute to support future Critical Zone research in the Anthropocene.  相似文献   
23.
High-level weathering limits separating ice-scoured topography from frost-weathered detritus were identified on 28 mountains in Wester Ross at altitudes of 700–960 m, and a further 22 peaks support evidence of ice scouring to summit level. Weathering limits are defined most clearly on sandstone and gneiss, which have resisted frost shattering during the Late Devensian Lateglacial, but can also be distinguished on schists and quartzite. Schmidt hammer measurements and analyses of clay mineral assemblages indicate significantly more advanced rock and soil weathering above the weathering limits. The persistence of gibbsite above weathering limits indicates that they represent the upper limit of Late Devensian glacial erosion. The regular decline of weathering-limit altitudes along former flowlines eliminates the possibility that the weathering limits represent former thermal boundaries between protective cold-based and erosive warm-based ice. The weathering limits are therefore interpreted as periglacial trimlines that define the maximum surface altitude of the last ice sheet. Calculated basal shear stresses of 50–95 kPa are consistent with this interpretation. Reconstruction of ice-sheet configuration indicates that the former ice-shed lay above 900 m along the present watershed, and that the ice surface descended northwestwards, with broad depressions along major troughs and localised domes around independent centres of ice dispersal. Extrapolation of the ice surface gradient and altitude suggests that the ice sheet did not overrun the Outer Hebrides, but was confluent with the independent Outer Hebrides ice-cap in the North Minch basin. Erratics located up to 140 m above the reconstructed ice surface are inferred to have been emplaced by a pre-Late Devensian ice sheet (or ice sheets) of unknown age. © 1997 John Wiley & Sons, Ltd.  相似文献   
24.
史前人类向青藏高原扩散的过程和适应高海拔缺氧环境的机制是多学科关注的热点科学问题.青海湖盆地是青藏高原旧石器-中石器时代遗址分布最为丰富的区域,对这些遗址出土的石制品原料的分析有助于深入理解青藏高原史前狩猎采集人群的石料开发策略、人群迁徙和交流联系.青海湖盆地151遗址出土的928件石制品的石料研究分析显示,处于末次冰消期的下文化层的石制品以近源的石英和石英岩为主要原料,而处于全新世早中期的上文化层在同类型近源石料仍占主体地位的情况下,开始出现较高比例和多样化的优质硅质石料,并且主要用于生产细石器.野外调查和查阅地质资料均未发现青海湖盆地内有151遗址中出现的同类型优质硅质石料产出,推测其来自远距离搬运.青海湖盆地内其他8个末次冰消期至全新世中期遗址的3269件石制品石料分析结果显示,与151遗址同类型的远源优质硅质石料在全新世早期开始在盆地内的遗址中出现.这一结果表明青海湖盆地末次冰消期古人类活动强度和范围有限,全新世早中期古人类受到全新世大暖期气候变好和周边地区农业人群兴起挤压活动空间的双重影响,在高原上的活动范围和强度大大增加,伴随着开始有意识地开发优质石料,较频繁地进行远距离迁移和人群交流.远源优质硅质石料的产地可能位于北祁连山区和青藏高原上的陆相火山岩区,需要未来更深入的研究揭示.该研究为深入理解青藏高原古人类的高海拔环境适应策略和移动模式提供了重要材料,为理解史前人类向高原扩散的机制提供了重要信息.  相似文献   
25.
The spatial distribution of hydraulic properties in the subsurface controls groundwater flow and solute transport. However, many approaches to modeling these distributions do not produce geologically realistic results and/or do not model the anisotropy of hydraulic conductivity caused by bedding structures in sedimentary deposits. We have developed a flexible object-based package for simulating hydraulic properties in the subsurface—the Hydrogeological Virtual Realities (HyVR) simulation package. This implements a hierarchical modeling framework that takes into account geological rules about stratigraphic bounding surfaces and the geometry of specific sedimentary structures to generate realistic aquifer models, including full hydraulic-conductivity tensors. The HyVR simulation package can create outputs suitable for standard groundwater modeling tools (e.g., MODFLOW), is written in Python, an open-source programming language, and is openly available at an online repository. This paper presents an overview of the underlying modeling principles and computational methods, as well as an example simulation based on the Macrodispersion Experiment site in Columbus, Mississippi. Our simulation package can currently simulate porous media that mimic geological conceptual models in fluvial depositional environments, and that include fine-scale heterogeneity in distributed hydraulic parameter fields. The simulation results allow qualitative geological conceptual models to be converted into digital subsurface models that can be used in quantitative numerical flow-and-transport simulations, with the aim of improving our understanding of the influence of geological realism on groundwater flow and solute transport.  相似文献   
26.
The numerical simulation of reactive mass transport processes in complex geochemical environments is an important tool for the performance assessment of future waste repositories. A new combination of the multi-component mass transport code GeoSys/RockFlow and the Gibbs Energy Minimization (GEM) equilibrium solver GEM-Selektor is used to calculate the accurate equilibrium of multiple non-ideal solid solutions which are important for the immobilization of radionuclides such as Ra. The coupled code is verified by a widely used benchmark of dissolution–precipitation in a calcite–dolomite system. A more complex application shown in this paper is the transport of Ra in the near-field of a nuclear waste repository. Depending on the initial inventories of Sr, Ba and sulfate, non-ideal sulfate and carbonate solid solutions can fix mobile Ra cations. Due to the complex geochemical interactions, the reactive transport simulations can describe the migration of Ra in a much more realistic way than using the traditional linear KD approach only.  相似文献   
27.
28.
This paper presents the hydrological coupling of the software framework OpenGeoSys (OGS) with the EPA Storm Water Management Model (SWMM). Conceptual models include the Saint Venant equation for river flow, the 2D Darcy equations for confined and unconfined groundwater flow, a two-way hydrological coupling flux in a compartment coupling approach (conductance concept), and Lagrangian particles for solute transport in the river course. A SWMM river–OGS aquifer inter-compartment coupling flux is examined for discharging groundwater in a systematic parameter sensitivity analysis. The parameter study involves a small perturbation (first-order) sensitivity analysis and is performed for a synthetic test example base-by-base through a comprehensive range of aquifer parametrizations. Through parametrization, the test cases enables to determine the leakance parameter for simulating streambed clogging and non-ocillatory river-aquifer water exchange rates with the sequential (partitioned) coupling scheme. The implementation is further tested with a hypothetical but realistic 1D river–2D aquifer model of the Poltva catchment, where discharging groundwater in the upland area affects the river–aquifer coupling fluxes downstream in the river course (propagating feedbacks). Groundwater contribution in the moving river water is numerically determined with Lagrangian particles. A numerical experiment demonstrates that the integrated river–aquifer model is a serviceable and realistic constituent in a complete compartment model of the Poltva catchment.  相似文献   
29.
Prediction about reservoir temperature change during carbon dioxide injection requires consideration of all, often subtle, thermal effects. In particular, Joule?CThomson cooling (JTC) and the viscous heat dissipation (VHD) effect are factors that cause flowing fluid temperature to differ from the static formation temperature. In this work, warm-back behavior (thermal recovery after injection completed), as well as JTC and VHD effects, at a multi-layered depleted gas reservoir are demonstrated numerically. OpenGeoSys (OGS) is able to solve coupled partial differential equations for pressure, temperature and mole-fraction of each component of the mixture with a combination of monolithic and staggered approaches. The Galerkin finite element approach is adapted for space discretization of governing equations, whereas for temporal discretization, a generalized implicit single-step scheme is used. For numerical modeling of warm-back behavior, we chose a simplified test case of carbon dioxide injection. This test case is numerically solved by using OGS and FeFlow simulators independently. OGS differs from FeFlow in the capability of representing multi-componential effects on warm-back behavior. We verify both code results by showing the close comparison of shut-in temperature profiles along the injection well. As the JTC cooling rate is inversely proportional to the volumetric heat capacity of the solid matrix, the injection layers are cooled faster as compared to the non-injection layers. The shut-in temperature profiles are showing a significant change in reservoir temperature; hence it is important to account for thermal effects in injection monitoring.  相似文献   
30.
Capture and geological sequestration of CO2 from large industrial sources is considered a measure for reducing anthropogenic emissions of CO2 and thus mitigating climate change. One of the main storage options proposed are deep saline formations, as they provide the largest potential storage capacities among the geologic options. A thorough assessment of this type of storage site therefore is required. The CO2-MoPa project aims at contributing to the dimensioning of CO2 storage projects and to evaluating monitoring methods for CO2 injection by an integrated approach. For this, virtual, but realistic test sites are designed geometrically and fully parameterized. Numerical process models are developed and then used to simulate the effects of a CO2 injection into the virtual test sites. Because the parameterization of the virtual sites is known completely, investigation as well as monitoring methods can be closely examined and evaluated by comparing the virtual monitoring result with the simulation. To this end, the monitoring or investigation method is also simulated, and the (virtual) measurements are recorded and evaluated like real data. Application to a synthetic site typical for the north German basin showed that pressure response has to be evaluated taking into account the layered structure of the storage system. Microgravimetric measurements are found to be promising for detecting the CO2 phase distribution. A combination of seismic and geoelectric measurements can be used to constrain the CO2 phase distribution for the anticline system used in the synthetic site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号