首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Reproduction of hydrographs at karst springs has been an approach of understanding the karst aquifer, which normally acts as drains for the groundwater flow. However, its numerical modeling is difficult since factors for the internal geometry and connectedness are unknown and hard to quantify. Hydrographs of the karst aquifer with well-developed conduits in Shuifang spring catchment were obtained from the automatic gauging station at the spring orifice. Data as to the conduit system were also obtained based on results and analyses of tracer tests. With these data, the hydrological responses of Shuifang spring to storm events were simulated by storm water management model (SWMM) developed by USA EPA (Environmental Protection Agency). Nash–Sutcliffe efficiencies are used to compare the computed flow to the observed, which are 0.95 and 0.92 for calibration and validation. SWMM was verified and applicable in karst conduit drainage system. The model illustrated correctly quick recharge through conduits and slow and low inflow from the fissured aquifer matrix. The SCS-CN (soil conservation service-curve number) infiltration method was used for computation of losses and runoff. Field tests indicated that permeability was extremely high but different in karst area, which was less sensitive to the computed runoff when exceeded the common value provided by SWMM. Therefore, an improved quantitative infiltration model for karst area will make SWMM possible to be a useful tool for assessing and reproducing spring hydrographs.  相似文献   

2.
Hydrological modeling in the karst area,Rižana spring catchment,Slovenia   总被引:1,自引:1,他引:0  
Karst aquifers are known for their heterogeneity and irregular complex flow patterns which make them more difficult to model and demand specific modeling approaches. This paper presents one such approach which is based on a conceptual model. The model was applied in a karst area of the catchment of Rižana spring (200 km2). It is based on the MIKE SHE code and incorporates the main hydrological processes and geological features of the karst aquifer (diffuse and concentrated infiltration, allogenic recharge, quick and slow groundwater flow, shifting groundwater divides and groundwater outflow from the catchment area). Modeling of evapotranspiration and flow in the upper part of the unsaturated zone is more detailed. For the modeling of groundwater flow in the karst aquifer, a conceptual model was applied which uses drainage function for the simulation of groundwater flow through large conduits (karst channels and large fissures). The model was calibrated and validated against the observed Rižana spring discharge which represents a measured response of the aquifer. The results of validation show that the model is able to adequately simulate temporal evolution of the spring discharge, measured by Nash–Sutcliffe coefficient (0.82) as well as overall water balance.  相似文献   

3.
通过地貌、水文地质、土壤、植被、地下洞穴管道等实地调查,以及示踪试验确定水房泉泉域范围和地下水文系统特征,并通过代表性点的土壤入渗试验、降雨和流量监测以及DEM数据等获得泉域水文模型所需的面积、结点高程、入渗率、糙率、管道长度、含水层孔隙度、出流系数等参数。选择SCS径流曲线模型估算地表产流,利用SWMM模型模拟泉域对场降雨的径流响应过程。通过运行模型,与实测流量比较,结果显示模拟曲线与观测流量曲线吻合较好,用于校正和验证的两场降雨产流的模拟误差分别为9.5%和12%,表明SWMM可应用于岩溶区以管道流为主要排水系统的含水介质的模拟。  相似文献   

4.
The present work was conducted in the Sinai Peninsula (1) to identify the recharge and flow characteristics and to evaluate the continuity of the Lower Cretaceous Nubian Sandstone aquifer; and (2) to provide information for the aquifer's rational appraisal. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. A considerable depletion in isotopic content (oxygen-18 and deuterium) and low d-excess values exist in the studied groundwater, reflecting the contribution of old meteoric water that recharged the aquifer in pluvial times. Modern recharge also occurs from precipitation that falls on the aquifer outcrops. The wide scatter of the data points around the two meteoric lines, the global meteoric water line (GMWL) and Mediterranean meteoric water line (MMWL), in the δ18O–δD diagram indicates considerable variation in recharge conditions (amount, altitude, temperature, air masses, distances from catchment, overland flow, etc.). The isotopic composition in the El-Bruk area is minimum (18O=–9.53‰), very close to the average value of the Western Desert Nubian Sandstone (18O=–10‰), where the local structural and lithologic conditions retard groundwater flow and the main bulk of water becomes noncyclic. The continuity of the aquifer in northern and central Sinai is evidenced by the isotopic similarity between samples taken from above and below the central Sinai Ragabet El-Naam fault, the distribution of potentiometric head, and hydrogeological cross sections. The combination of isotopic composition in terms of 18O and chemical composition in terms of TDS and salt contents is the basis for separating the studied groundwater into groups that reflect the recharge sources and isotopic and chemical modifications during flow. Electronic Publication  相似文献   

5.
Analysis of tidal effects on aquifer systems plays an important role in coastal aquifer management owing to various hydrological, engineering and environmental problems in coastal areas. Using the real-world data of unconfined and confined aquifers, a data-driven approach is presented in this study for the analysis of tide–aquifer interaction in coastal aquifers. Six analytical tide–aquifer interaction models were selected which take into account the effects of vertical beach, sloping beach, tidal loading, aquifer leakage, outlet capping, and combined leakage and outlet capping on tide-induced groundwater fluctuations. The tide–aquifer interaction datasets were obtained from the Konan groundwater basin (unconfined aquifer) of Japan and the Dridrate groundwater basin (confined aquifer) of Morocco. The analysis of the results obtained by the sloping beach model revealed that for a given beach slope, the amplitude of groundwater level increases with an increase in aquifer diffusivity and a decrease in aquifer thickness. However, no significant effect of beach slope was observed in this study at unconfined sites for all the datasets. The influence of tidal loading was found to be considerably less for all the three confined sites. Further, the analysis of the results of the leakage model indicated that with an increase in leakage into the aquifer, the amplitude of groundwater level as well as the phase shift (time lag) decreases. Of all the confined and unconfined datasets, only two confined sites were found to be affected by outlet capping. Overall, it is concluded that the coastal beach bordering the Konan basin is not significantly sloping, the contribution of tidal loading to tide-induced groundwater fluctuations in the Dridrate aquifer is not appreciable, and that the aquifer leakage and outlet capping do not exist at the unconfined sites under investigation.  相似文献   

6.
Rubber dams have been widely built for their advantages in increase of flooding resources utilization in the north arid and semiarid plain regions of China. Rise in river water stage by the dams, particularly during the drought periods, increases lateral seepage of river water into groundwater, and thus groundwater table and phreatic evaporation loss in the riparian zones. In this study, a riparian area of the Baihe River in Nanyang of Henan Province, China was selected for investigation of influences of the river dams on the groundwater recharge and evaporation loss. A hydraulic model, HEC-RAS, was used for simulation of the river stage variations along the Baihe River, and a numerical groundwater model, MODFLOW, was applied for simulation of groundwater dynamics and estimation of river flow seepage into aquifer and evaporation loss. The results show that the dams increase river stages of 2–3 m during January 2000–December 2002. The increase in the captured groundwater recharge was 7.15–34.06 million m3/a and the increased phreatic evaporation loss occupies 10% of the increased recharge when four rubber dams were built.  相似文献   

7.
Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.  相似文献   

8.
The area lies between Hugli river in the northwest and Bidyadhari river in the east and includes the East Kolkata Wetlands. The East Kolkata Wetlands is included in the List of Wetlands of International Importance (“Ramsar List”), as per the Convention on Wetlands signed in Ramsar, Iran, in 1971. This wetland has been declared as a Ramsar site on the 19th August 2002 (Ramsar site no. 1208) and therefore has acquired an international status. The area is a part of the lower deltaic plain of the Bhagirathi–Ganga river system and is generally flat in nature. The sub-surface geology of the area is completely blanketed by the Quaternary fluviatile sediments comprising a succession of clay, silty clay, sand and sand mixed with occasional gravel. The Quaternary aquifer is sandwiched between two clay sequences. The confined aquifer is made up of moderately well sorted sand and reflects fluviatile environment of deposition. The regional groundwater flow direction is from east to west. Detailed geochemical investigations of 40 groundwater samples along with statistical analysis (for example, correlation and principal component analysis) on these chemical data reveal: (i) four types of groundwater quality, for example, good, poor, very poor and water unsuitable for drinking purpose, (ii) four hydrochemical facies which may be assigned to three broad types such as “fresh”, “blended”, and “brackish” waters, (iii) the evolution of the “blended” water is possibly due to hydraulic mixing of “fresh” and “brackish” waters within the aquifer matrix and/or in well mixing, and (iv) absence of Na–Cl facies indicates continuous flushing of the aquifer.  相似文献   

9.
 Groundwater modelling studies have been found to be a potential tool in planning the pre-development management of groundwater resources in newly developing aquifer systems. One such study was attempted in Upper Thamalakane River valley, Okavango Delta, Botswana (southern Africa). There are three major aquifers separated by two aquitards in the valley portion. The top two aquifers are freshwater bearing zones and the bottom one is saline. The hydrological set-up of the basin is complex, as the groundwater flow directions are opposite in the upper-unconfined and in the lower-confined aquifers. A preliminary multilayer model was developed for this aquifer system by making use of only available data. The hydrodynamic behavior was then studied under two prediction scenarios to evolve appropriate management decisions for locating the well field (large diameter wells) in the upper aquifer by making use of induced river infiltration during the flood season. The aquifer response for variable river-flow conditions was studied and the induced river infiltration was quantified. Received: 27 August 1998 · Accepted: 8 March 1999  相似文献   

10.
Understanding the processes controlling groundwater/surface-water interaction is essential for effective resource management and for protecting sensitive ecosystems. Through intensive monitoring of Chalk groundwater, shallow gravel groundwater and surface water in the River Lambourn, UK, using a combination of hydrochemical and hydrophysical techniques, a complex pattern of interactions has been elucidated. The river is broadly in hydraulic contact with the streambed sediments and adjacent gravels and sands, but these deposits are mainly hydraulically separate from the underlying Chalk at the site. The hydraulic relationship between the river and underlying alluvium is variable, involving components of groundwater flow both parallel and transverse to the river and with both effluent and influent behaviour seen. While the gravel aquifer is significant in controlling groundwater/surface-water interaction, its importance as a route for flow down the catchment is likely to be modest compared with river discharge. The hydrological complexity revealed in a geological setting typical of lowland UK Chalk streams has implications both for investigation methods and for management such as in the setting of environmental objectives in the European Water Framework Directive.  相似文献   

11.
This paper presents a new model of the rainfall-runoff-groundwater flow processes applicable to semiarid and arid catchments in south-east Iran. The main purpose of the model is to assess the groundwater recharge to aquifers in these catchments. The model takes into account main recharge mechanisms in the region, including subsurface flow in the valley alluvium in mountainous areas and recharge from the bed of ephemeral rivers. It deals with the effects of spatial variation in the hydrological processes by dividing the catchment into regions of broad hydrologic similarity named as highland, intermediate and aquifer areas. The model is based on the concept of routing precipitation within and through the catchment. The model has been applied to the Zahedan catchment and the results indicate that the groundwater level estimated by the recharge model generally is in agreement with the behaviour of groundwater levels in observation wells. The sensitivity analysis indicates that when the rainfall in the aquifer area is used to replace the values recorded in the intermediate area and the highland area, the recharge estimates are reduced by 42-87%. This result supports the division of the catchment into different zones of hydrological similarity to account for spatial variability of hydrological processes. Electronic Publication  相似文献   

12.
 The Gaza Strip coastal aquifer is under severe hydrological stress due to over-exploitation. Excessive pumping during the past decades in the Gaza region has caused a significant lowering of groundwater levels, altering in some regions the normal transport of salts into the sea and reversing the gradient of groundwater flow. The sharp increase in chloride concentrations in groundwater indicates intrusion of seawater and/or brines from the western part of the aquifer near the sea. Simulations of salt-water intrusion were carried out using a two-dimensional density-dependent flow and transport model SUTRA (Voss 1984). This model was applied to the Khan Yunis section of the Gaza Strip aquifer. Simulations were done under an assumption that pumping rates increase according to the rate of population growth, or about 3.8% a year. Model parameters were estimated using available field observations. Numerical simulations show that the rate of seawater intrusion during 1997–2006 is expected to be 20–45 m/yr. The results lead to a better understanding of aquifer salinization due to seawater intrusion and give some estimate of the rate of deterioration of groundwater. Received, September 1997 Revised, January 1998, July 1998 Accepted, August 1998  相似文献   

13.
A hydrochemical investigation was conducted in the Ejina Basin to identify the hydrochemical characteristics and the salinity of groundwater. The results indicate that groundwater in the area is brackish and are significantly zonation in salinity and water types from the recharge area to the discharge area. The ionic ration plot and saturation index (SI) calculation suggest that the silicate rock weathering and evaporation deposition are the dominant processes that determine the major ionic composition in the study area. Most of the stable isotope δ18O and δD compositions in the groundwater is a meteoric water feature, indicating that the groundwater mainly sources from meteoric water and most groundwater undergoes a long history of evaporation. Based on radioactive isotope tritium (3H) analysis, the groundwater ages were approximately estimated in different aquifers. The groundwater age ranges from less than 5 years, between 5 years and 50 years, and more than 50 years. Within 1 km of the river water influence zone, the groundwater recharges from recent Heihe river water and the groundwater age is about less than 5 years in shallow aquifer. From 1 km to 10 km of the river water influence zone, the groundwater sources from the mixture waters and the groundwater age is between 5 years and 50 years in shallow aquifer. The groundwater age is more than 50 years in deep confined aquifer.  相似文献   

14.
 Drinking water supply wells were constructed in the Sabarmati river bed aquifer of Ahmedabad city using radial pipes and are known as French Collector wells. Contamination of groundwater from one of the French wells near Sabarmati railway bridge was noticed in 1992. The suspected pollution sources are Duff-nala of Shahibaug and two other sources from slum dwellings on either side of Sabarmati river. A combined groundwater flow, pathlines and a mass transport model was constructed covering an area of 9 km2 to analyse the capture zone of the French well under two different scenarios. Aquifer parameters of the river bed aquifer were available. Dry river bed condition was simulated under scenario I and controlled flow in the river bed was simulated under scenario II. The groundwater velocity and migration of contaminant particles from sources was analysed in the pathline model. Total dissolved solids (TDS) concentration contours originating from sources in the mass transport model (MT3D) were computed by solving an advection-dispersion equation. The computed pathlines and TDS concentration contours indicate likely migration of contaminant plume from pollutant sources to the French well during 365 days under two scenarios. The model results confirm the tracer injection studies carried out to know the likely migration of contaminants towards the French well. The modelling study emphasised the necessity of controlled release of surface water in Sabarmati river bed from Dharoi reservoir throughout the year. Received: 28 October 1998 · Accepted: 17 June 1999  相似文献   

15.
In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river–aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river–aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river–aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.  相似文献   

16.
Seepage from a tailings dam is the major source of groundwater pollution in the Selebi-Phikwe area, where mining of sulphidic nickel–copper–cobalt ore started in 1973 and will continue until 2014. The seepage water has a pH in the range of 1.7–2.8 and is strongly enriched in SO4 2− (5,680 g/L) and heavy metals (6,230 μg/L Ni, 1,860 μg/L Cu and 410 μg/L Co). The fracture aquifer affected by pollution from the dam exhibits a remarkable capacity of heavy-metal sorption. Most of the Ni, Cu and Co is scavenged at less than 500 m distance downgradient from the polluting source, whereas SO4 2− is not immobilized significantly. The heavy-metal sorption process is assumed to be due to surface complexation, which is supported by a relatively high groundwater pH (in the range of 6.2–7.8 at >200 m distance from the tailings dam). The objective of this study is to demonstrate that the sorption process can be incorporated into a realistic three-dimensional reactive-transport groundwater model that is implicitly charge-balanced. The simulations are performed with the PHAST1.2 program, which is based on the HST3D flow and transport code and the hydrochemical PHREEQC2.12 code.  相似文献   

17.
The Narmada River flows through the Deccan volcanics and transports water and sediments to the adjacent Arabian Sea. In a first-ever attempt, spatial and temporal (annual, seasonal, monthly and daily) variations in water discharge and sediment loads of Narmada River and its tributaries and the probable causes for these variations are discussed. The study has been carried out with data from twenty-two years of daily water discharge at nineteen locations and sediment concentrations data at fourteen locations in the entire Narmada River Basin. Water flow in the river is a major factor influencing sediment loads in the river. The monsoon season, which accounts for 85 to 95% of total annual rainfall in the basin, is the main source of water flow in the river. Almost 85 to 98% of annual sediment loads in the river are transported during the monsoon season (June to November). The average annual sediment flux to the Arabian Sea at Garudeshwar (farthest downstream location) is 34.29×106 t year−1 with a water discharge of 23.57 km3 year−1. These numbers are the latest and revised estimates for Narmada River. Water flow in the river is influenced by rainfall, catchment area and groundwater inputs, whereas rainfall intensity, geology/soil characteristics of the catchment area and presence of reservoirs/dams play a major role in sediment discharge. The largest dam in the basin, namely Sardar Sarovar Dam, traps almost 60–80% of sediments carried by the river before it reaches the Arabian Sea.  相似文献   

18.
为探讨计算高效的元胞自动机模型(WCA2D)与传统一维管网模型耦合的机制以及计算效果,尝试将WCA2D与SWMM模型耦合(SWMM/WCA2D),以广州市长湴片区为例探究一种暴雨洪涝快速二维模拟技术,对比实测积水数据以及SWMM/LISFLOOD-FP模拟,结果表明:SWMM/WCA2D模拟结果与"20180607"实测积水数据相近,表明模型精度良好;根据多指标评估结果,综合考虑主干渠道淤积以及建筑物阻挡情景的RTPR、RPPV、F1值分别达到0.8、0.6、0.7,模拟精度最高,最能反映区域实际情况;通过与SWMM耦合,WCA2D和LISFLOOD-FP的模拟结果差异小(最大水深差值基本低于0.1 m)、相关性强(相关系数基本超过0.7),但前者计算效率是后者的3~5倍,表明WCA2D能够耦合SWMM且计算效率更高,为复杂城市化地区暴雨洪涝快速模拟提供了一种新方法。  相似文献   

19.
The groundwater extracted from the unconfined Quaternary aquifer is the main source of water supply in El-Tur area. The area is bounded from the east by the elevated basement complex of Southern Sinai and from the west by El-Qabaliyat Ridge. The wadis dissecting these highlands form effective watersheds of the Quaternary aquifer. These wadis form areas of focused recharge. Recharge also occurs directly via the Quaternary sediments covering El-Qaa Plain. Subsurface lateral groundwater flow from the fractured basement contributes significant recharge to the aquifer as well. The aquifer sediment facies affect the type and quality of groundwater. In the eastern part where the aquifer is composed mainly of gravel and coarse sand with fragments of weathered basement, the Na-Cl-SO4 water dominates. In the west where the facies change is rapid and complex, many water types arise. The base exchange index (BEX) is positive in this part reflecting the role of clay minerals in changing the water types via cation exchange. In the east where clays are insignificant in the aquifer, the BEX is negative. In the western part next to El-Qabaliyat Ridge, the wells discharging from the calcareous sand zone have low groundwater salinities compared to the wells discharging from the alluvium. In general, the groundwater salinity increases in the direction of groundwater flow from the northeast to the southwest which reflects the dissolution of aquifer sediments. The concentration relationships between the major ions on one hand and chloride on the other reflect the dissolution of calcium carbonates, precipitation of K- and Mg-bearing minerals, and cation exchange of Ca for Na on clay minerals. The hydrochemical models support these reactions. In addition, they show that the effect of evaporation on the recharge water in the western catchment is about four times its effect on the eastern recharge water which reflects the rapid recharge through the wadis draining the fractured basement. Moreover, the contribution from the eastern catchment in sample No. 23 is more than four-folds the contribution from the western recharge area. The stable isotopes (2H and 18O) show that the Quaternary aquifer is recharging from recent rainfall. However, upward leakage of Paleogene groundwater (depleted in 18O) also occurs. The groundwater level map shows strong overpumping impact especially in the areas close to El-Tur city.  相似文献   

20.
Documenting whether surface water catchments are in net chemical mass balance is important to understanding hydrological systems. Catchments that export significantly greater volumes of solutes than are delivered via rainfall are not in hydrologic equilibrium and indicate a changing hydrological system. Here an assessment is made of whether a saline catchment in southeast Australia is in chemical mass balance based on Cl. The upper reaches of the Barwon River, southeast Australia, has total dissolved solids, TDS, concentrations of up to 5860 mg/L and Cl concentrations of up to 3370 mg/L. The high river TDS concentrations are due to the influxes of groundwater with TDS concentrations of up to 68,000 mg/L. Between 1989 and 2011, the median annual Cl flux from the upper Barwon catchment was 17.8 × 106 kg (∼140 kg/a/ha). This represents 340–2230% of the annual Cl input by rainfall to the catchment. Major ion and stable isotope geochemistry indicate that the dominant source of solutes in the catchment is evapotranspiration of rainfall, precluding mineral dissolution as a source of excess Cl. The upper Barwon catchment is not in chemical mass balance and is a net exporter of solutes. The chemical imbalance may reflect the transition within the last 100 ka from an endorheic lake system where solutes were recycled producing shallow groundwater with high TDS concentrations to a better drained catchment. Alternatively, a rise in the regional water table following land clearing may have increased the input of groundwater with high TDS concentrations to the river system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号