首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   9篇
  国内免费   6篇
测绘学   7篇
大气科学   36篇
地球物理   76篇
地质学   95篇
海洋学   45篇
天文学   45篇
综合类   4篇
自然地理   21篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   4篇
  2018年   7篇
  2017年   10篇
  2016年   17篇
  2015年   6篇
  2014年   10篇
  2013年   31篇
  2012年   14篇
  2011年   9篇
  2010年   4篇
  2009年   13篇
  2008年   9篇
  2007年   9篇
  2006年   11篇
  2005年   7篇
  2004年   13篇
  2003年   11篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   10篇
  1995年   18篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1988年   3篇
  1986年   8篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1964年   1篇
  1929年   1篇
排序方式: 共有329条查询结果,搜索用时 15 毫秒
11.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   
12.
We have developed a significant body of new field-based evidence relating to the history of crustal extension in western Turkey. We establish that two of the NE–SW-trending basins in this region, the Gördes and Selendi Basins, whose sedimentary successions begin in the early Miocene, are unlikely to relate to late-stage Alpine compressional orogeny or to E–W extension of Tibetan-type grabens as previously suggested. We argue instead that these basins are the result of earlier (?) late Oligocene, low-angle normal faulting that created approximately N–S “scoop-shaped” depressions in which clastic to lacustine and later tuffaceous sediments accumulated during early–mid-Miocene time, separated by elongate structural highs. These basins were later cut by E–W-trending (?) Plio–Quaternary normal faults that post-date accumulation of the Neogene deposits. In addition, we interpret the Alaşehir (Gediz) Graben in terms of two phases of extension, an early phase lasting from the early Miocene to the (?) late Miocene and a young Plio–Quaternary phase that is still active. Taking into account our inferred earlier phase of regional extension, we thus propose a new three-phase “pulsed extension” model for western Turkey. We relate the first two phases to “roll-back” of the south Aegean subduction zone and the third phase to the westward “tectonic escape” of Anatolia.  相似文献   
13.
Twentieth‐century summer (July–August) temperatures in northern Finland are reconstructed using ring widths, maximum density and stable carbon isotope ratios (δ13C) of Scots pine tree rings, and using combinations of these proxies. Verification is based on the coefficient of determination (r2), reduction of error (RE) and coefficient of efficiency (CE) statistics. Of the individual proxies, δ13C performs best, followed by maximum density. Combining δ13C and maximum density strengthens the climate signal but adding ring widths leads to little improvement. Blue intensity, an inexpensive alternative to X‐ray densitometry, is shown to perform similarly. Multi‐proxy reconstruction of summer temperatures from a single site produces strong correlations with gridded climate data over most of northern Fennoscandia. Since relatively few trees are required (<15) the approach could be applied to long sub‐fossil chronologies where replication may be episodically low. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
14.
Satellite retrievals of atmospheric composition provide a wealth of data on a global scale. These complement results from atmospheric chemistry-transport models (CTMs), and can be combined using data assimilation. We present two assimilation schemes coupled to the Danish Eulerian Hemispheric Model (DEHM), a three-dimensional, off-line CTM with full photochemistry: a variant on the ensemble Kalman filter and the three-dimensional variational scheme. The aim of this paper is to describe the two schemes and present an initial assessment of their impacts on model skill. Retrievals of multiple atmospheric trace gases are assimilated, namely: NO2 tropospheric column densities, CH4 total column densities, and partial column concentrations of O3, CO and CH4; these data are retrieved from four satellite sensors. Data for each species are assimilated independently of one another, and other species are only adjusted indirectly via the model’s chemistry and dynamics. Assimilation results are compared with measurements from surface monitoring stations and other satellite retrievals, and preliminary validation results are presented.Reference simulations (without assimilation) grossly underestimate surface CO concentrations, and both assimilation schemes eliminate this large and systematic model bias. The assimilation improves the spatial correlation of modelled CO with surface observations, and improves the spatial correlation between forecasts and retrievals for CO, NO2 and O3. Results for CH4 show a loss of skill due to a mismatch in model bias between two assimilated CH4 data-sets. Finally, we discuss differences in methodology and results between this paper and a recent study on multi-species chemical data assimilation. Joint optimisation of initial conditions and emission rates offers a promising direction for improving modelled boundary-layer concentrations.  相似文献   
15.
16.
17.
Extrusive and intrusive igneous rocks represent different parts of a magmatic system and ultimately provide complementary information about the processes operating beneath volcanoes. To shed light on such processes, we have examined and quantified the textures and mineral compositions of plutonic and cumulate xenoliths and lavas from Bequia, Lesser Antilles arc. Both suites contain assemblages of iddingsitized olivine, plagioclase, clinopyroxene and spinel with rare orthopyroxene and ilmenite. Mineral zoning is widespread, but more protracted in lavas than xenoliths. Plagioclase cores and olivine have high anorthite (An?≤?98) and low forsterite (Fo?≤?84) compositions respectively, implying crystallisation from a hydrous mafic melt that was already fractionated. Xenolith textures range from adcumulate to orthocumulate with variable mineral crystallisation sequences. Textural criteria are used to organize the xenoliths into six groups. Amphibole, notably absent from lavas, is a common feature of xenoliths, together with minor biotite and apatite. Bulk compositions of xenoliths deviate from the liquid line of descent of lavas supporting a cumulate origin with varying degrees of reactive infiltration by evolved hydrous melts, preserved as melt inclusions in xenolith crystals. Volatile saturation pressures in melt inclusions indicate cumulate crystallization over a 162–571 MPa pressure range under conditions of high dissolved water contents (up to 7.8 wt% H2O), consistent with a variety of other thermobarometric estimates. Phase assemblages of xenoliths are consistent with published experimental data on volatile-saturated low-magnesium and high-alumina basalts and basaltic andesite from the Lesser Antilles at pressures of 200–1000 MPa, temperatures of 950–1050 °C and dissolved H2O contents of 4–7 wt%. Once extracted from mid-crustal mushes, residual melts ascend to higher levels and undergo H2O-saturated crystallization in shallow, pre-eruptive reservoirs to form phenocrysts and glomerocrysts. The absence of amphibole from lavas reflects instability at low pressures, whereas its abundance in xenoliths testifies to its importance in mid-crustal differentiation processes. A complex, vertically extensive (6 to at least 21 km depth) magmatic system is inferred beneath Bequia. Xenoliths represent fragments of the mush incorporated into ascending magmas. The widespread occurrence of evolved melts in the mush, but the absence of erupted evolved magmas, in contrast to islands in the northern Lesser Antilles, may reflect the relative immaturity of the Bequia magmatic system.  相似文献   
18.
New biostratigraphical, geochemical, and magnetic evidence is synthesized with IODP Expedition 352 shipboard results to understand the sedimentary and tectono-magmatic development of the Izu–Bonin outer forearc region. The oceanic basement of the Izu–Bonin forearc was created by supra-subduction zone seafloor spreading during early Eocene (c. 50–51 Ma). Seafloor spreading created an irregular seafloor topography on which talus locally accumulated. Oxide-rich sediments accumulated above the igneous basement by mixing of hydrothermal and pelagic sediment. Basaltic volcanism was followed by a hiatus of up to 15 million years as a result of topographic isolation or sediment bypassing. Variably tuffaceous deep-sea sediments were deposited during Oligocene to early Miocene and from mid-Miocene to Pleistocene. The sediments ponded into extensional fault-controlled basins, whereas condensed sediments accumulated on a local basement high. Oligocene nannofossil ooze accumulated together with felsic tuff that was mainly derived from the nearby Izu–Bonin arc. Accumulation of radiolarian-bearing mud, silty clay, and hydrogenous metal oxides beneath the carbonate compensation depth (CCD) characterized the early Miocene, followed by middle Miocene–Pleistocene increased carbonate preservation, deepened CCD and tephra input from both the oceanic Izu–Bonin arc and the continental margin Honshu arc. The Izu–Bonin forearc basement formed in a near-equatorial setting, with late Mesozoic arc remnants to the west. Subduction-initiation magmatism is likely to have taken place near a pre-existing continent–oceanic crust boundary. The Izu–Bonin arc migrated northward and clockwise to collide with Honshu by early Miocene, strongly influencing regional sedimentation.  相似文献   
19.
20.
Ten sites near the Snake River Plain have consistent differences in their climatic histories. Sites at low elevation reflect the “early Holocene xerothermic” of the Pacific Northwest, whereas most climatic chronologies at high elevation indicate maximum warmth or aridity somewhat later, ca. 6000 yr ago. This elevational contrast in climatic histories is duplicated at three sites from the central Snake River Plain. For sites in such close proximity, the different chronologies cannot be explained by changes in atmospheric circulation during the late Quaternary. Rather, the differences are best explained by the autecology of the plants involved and the changing seasonal climate. The seasonal climatic sequence predicted by multiple thermal maxima explains the high- and low-elevation chronologies. During the early Holocene, maximum insolation and intensified summer drought in July forced low-elevation vegetation upward. However, moisture was not a limiting factor at high elevation, where vegetation moved upward in response to increased length of growing season coincident with maximum September insolation 6000 yr ago.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号