首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
测绘学   1篇
地球物理   5篇
地质学   41篇
海洋学   5篇
天文学   10篇
自然地理   2篇
  2021年   4篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2013年   3篇
  2011年   3篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2003年   4篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
  1975年   3篇
  1971年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
61.
The findings of BRITICE-CHRONO Transect 2 through the North Sea Basin and eastern England are reported. We define ice-sheet marginal oscillation between ~31 and 16 ka, with seven distinctive former ice-sheet limits (L1–7) constrained by Bayesian statistical analysis. The southernmost limit of the North Sea Lobe is recorded by the Bolders Bank Formation (L1; 25.8–24.6 ka). L2 represents ice-sheet oscillation and early retreat to the northern edge of the Dogger Bank (23.5–22.2 ka), with the Garret Hill Moraine in north Norfolk recording a significant regional readvance to L3 at 21.5–20.8 ka. Ice-marginal oscillations at ~26–21 ka resulted in L1, L2 and L3 being partially to totally overprinted. Ice-dammed lakes related to L1–3, including Lake Humber, are dated at 24.1–22.3 ka. Ice-sheet oscillation and retreat from L4 to L5 occurred between 19.7 and 17.3 ka, with grounding zone wedges marking an important transition from terrestrial to marine tidewater conditions, triggered by the opening of the Dogger Lake spillway between 19.9 and 17.5 ka. L6 relates to ice retreat under glacimarine conditions and final ice retreat into the Firth of Forth by 15.8 ka. L7 (~15 ka) represents an ice retreat from Bosies Bank into the Moray Firth.  相似文献   
62.
We present a survey on coronal prominence cavities conducted using 19 months of data from the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO) satellite. Coronal cavities are elliptical regions of rarefied density lying above and around prominences. They can be long-lived (weeks to months) but are often observed to eventually erupt as part of a coronal mass ejection (CME). We determine morphological properties of the cavities both by qualitatively assessing their shape, and quantitatively fitting them with ellipses. We demonstrate consistency between these two approaches, and find that fitted ellipses are taller than they are wide for almost all cavities studied, in agreement with an earlier analysis of white-light cavities. We examine correlations between cavity shape, aspect ratio, and propensity for eruption. We find that cavities with a teardrop-shaped morphology are more likely to erupt, and we discuss the implications of this morphology for magnetic topologies associated with CME models. We provide the full details of the survey for broad scientific use as supplemental material.  相似文献   
63.
The local structural response of Ca/Mg substitution and the energetic effects associated with dodecahedral ordering in the pyrope-grossular garnet solid solution are derived from a combination of static lattice energy calculations and Monte Carlo simulations. We start with a thorough analysis of the goodness of the empirical potential models used for the modelling of aluminosilicate garnets. The degree of polyhedral distortion was found to be a sensitive indicator for the quality of the model and, by comparison with experimental data, was used to select the best of several available empirical potentials. The Ca/Mg substitution on the dodecahedral site in garnet was found to produce strong local distortions in the surrounding tetrahedral and octahedral polyhedra. This arises from the absence of rigid unit modes (RUMS) in the garnet structure, because local rotations of otherwise rigid SiO4 tetrahedra and AlO6 octahedra cannot occur in order to accommodate different-sized divalent cations in the dodecahedral sites. Strain effects, therefore, mainly govern the dodecahedral substitution, and the corresponding strain field around a dodecahedral site has a minimum radius of 5?Å. Pyrope-grossular solid solution compositions were modelled using a supercell approach. For several garnet compositions many different configurations representing individual disordered arrangements were relaxed. The resulting energies were analyzed in terms of different-neighbour interactions to determine the parameters of a model Hamiltonian. The corresponding interaction energies were found to be virtually independent of composition. Surprisingly, the nearest-neighbour interaction between edge-sharing dodecahedra is of no particular significance in the garnets. Instead, the strongest interaction is only via the third-nearest neighbours, i.e. dodecahedra that are edge-shared to a common SiO4 tetrahedron. This cannot lead to dodecahedral long-range order in garnets, but can produce significant amounts of short-range order. Monte Carlo simulations were performed on several compositions to determine the macroscopic effects such as NMR-based cluster occupancy, ordering energy and configurational entropy of the short-range ordering process. As expected, the samples tend to random disorder at high temperatures, and at low temperatures it is compositions nearer Py50Gr50 that depart most strongly from random mixing. For example, a maximum reduction of 3.5?J?mol?1?K?1 is predicted for Py75Gr25 and ~10?J?mol?1?K?1 for Py50Gr50. A comparison of NMR cluster occupancy with experimental 29Si MAS NMR resonance intensity is partly successful. However, the changes in NMR cluster occupancy are relatively low (~5%) compared to changes in configurational entropy (~30%), implying that it might be difficult to estimate exact entropy data from 29Si MAS NMR line intensities.  相似文献   
64.
During the last glacial cycle an intriguing feature of the British-Irish Ice Sheet was the North Sea Lobe (NSL); fed from the Firth of Forth and which flowed south and parallel to the English east coast. The controls on the formation and behaviour of the NSL have long been debated, but in the southern North Sea recent work suggests the NSL formed a dynamic, oscillating terrestrial margin operating over a deforming bed. Further north, however, little is known of the behaviour of the NSL or under what conditions it operated. This paper analyses new acoustic, sedimentary and geomorphic data in order to evaluate the glacial landsystem imprint and deglacial history of the NSL offshore from NE England. Subglacial tills (AF2/3) form a discontinuous mosaic interspersed with bedrock outcrops across the seafloor, with the partial excavation and advection of subglacial sediment during both advance and retreat producing mega-scale glacial lineations and grounding zone wedges. The resultant ‘mixed-bed’ glacial landsystem is the product of a dynamic switch from a terrestrial piedmont-lobe margin with a net surplus of sediment to a partially erosive, quasi-stable, marine-terminating, ice stream lobe as the NSL withdrew northwards. Glaciomarine sediments (AF4) drape the underlying subglacial mixed-bed imprint and point to a switch to tidewater conditions between 19.9 and 16.5 ka cal BP as the North Sea became inundated. The dominant controls on NSL recession during this period were changing ice flux through the Firth of Forth ice stream onset zone and water depths at the grounding line; the development of the mixed-bed landsystem being a response to grounding line instability. © 2018 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号