首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   29篇
  国内免费   28篇
测绘学   3篇
大气科学   70篇
地球物理   2篇
地质学   10篇
综合类   3篇
自然地理   7篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
71.
CO2浓度倍增对大豆叶片和总生物量的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   
72.
三江平原主要粮食作物气候适应性分区   总被引:1,自引:0,他引:1  
郭建平  高素华  潘亚茹 《气象》1992,18(12):38-40
为把三江平原建成高产稳产粮豆生产基地,分析了三江平原的农业自然条件及主要粮食作物产量的波动及变率。根据相对气象产量的最大值及最小值,计算了作物的气候适应性指数。并按该指数的大小,对4种主要作物的适宜种植情况进行分区。从而为三江平原各县内部农业结构调整及三江平原总体农业结构调整提供依据。  相似文献   
73.
《巴黎协定》明确提出将全球平均升温控制在相对于工业化前水平2℃以内,并努力将其控制在1.5℃以内,以降低气候变化的风险与影响。随后,《联合国气候变化框架公约》(UNFCCC)邀请IPCC筹备关于1.5℃增暖影响及温室气体排放途径的特别报告,为UNFCCC谈判提供科学依据。通过回顾近期发表的一些成果发现,在1.5℃到2℃的不同升温条件下,很多极端天气事件发生的概率将增加。2℃条件下一些易受威胁的系统,如生态系统和农业系统,将承受全球变暖带来的严重后果;海平面明显上升,珊瑚礁锐减,季风降水减弱等影响将进一步加强。同时,不同地区对全球不同程度增暖的响应也存在很大差异。总的说来,相较于2℃增暖而言,将增暖控制在1.5℃以内能进一步减小气候变化影响的风险。然而,要把全球增暖控制在1.5℃内具有极大的挑战性,并且目前对1.5℃增暖的影响认识仍然十分不足。定量分析2℃和1.5℃增暖对不同区域自然和人类系统造成的影响差异,需要更高分辨率的模式以及更多针对2℃和1.5℃增暖影响而设计的专门试验支持。  相似文献   
74.
频繁发生的农业气象灾害制约着我国农业生产的快速、健康发展。农业气象灾害一直是广大气象科技工作者开展的主要研究课题之一。在国家科技攻关等计划的支持下,近10年来农业气象灾害研究取得了许多成果。完善农业气象灾害监测业务和预报服务,构建农业气象灾害风险评估、防御体系是农业气象灾害研究的重点。基于3S技术和地面监测相结合,构建了农业气象灾害动态监测系统,从宏观和微观角度来全面监测农业气象灾害的发生发展;建立和完善了卫星遥感监测系统,开展干旱、洪涝、冷害等灾害的动态监测,逐步建立集3S于一体的高空时空分辨率的灾害监测预警系统。农业气象灾害预警研究主要包括:数理统计预报方法进一步发展,农业气象模式与气候模式结合的初步尝试,GIS和网络等高技术在农业气象灾害预警中的应用,省级农业气象灾害预测系统的研制。我国农业气象灾害风险(影响)评估的研究,大致可以2001年为界分为二个阶段。第一阶段,以灾害风险分析技术方法探索研究为主的起步阶段,第二阶段,以灾害影响平度的风险化、数量化技术方法为主的研究发展阶段,构建灾害风险分析、跟踪评估、灾后评估、应变对策的技术体系;具体研究包括农业气象灾害风险分析、风险评估、风险区划和基于遥感监测信息的农业干旱评估。近年来我国农业气象灾害防御研究主要是将高效利用农业气候资源的主动防御技术和开发防灾制剂的被动防御技术相结合,在防御农业干旱和低温冷害方面取得了良好效果。  相似文献   
75.
风廓线雷达具有高的时间和空间分辨率,已经被广泛应用于大气探测、环境气象以及灾害性雷暴天气监测预警等领域.但风廓线雷达组网二次开发产品缺乏,一定程度限制了其在天气气候领域的深度应用.简要介绍中国风廓线雷达网站点分布及其水平风廓线和谱宽等数据产品;阐述基于风廓线雷达观测产生的高时间分辨率边界层高度、垂直风切变、湍流强度和散...  相似文献   
76.
CO2和O3浓度倍增对作物影响的研究进展   总被引:14,自引:0,他引:14  
文中利用自行设计的OTC - 1型开顶式气室进行了 9a的田间试验 ,取得了一批质量可靠的试验数据 ,分析了CO2 浓度倍增对大豆、冬小麦、棉花、玉米、春小麦和谷子的生物量、产量及品质的影响 ,结果表明CO2 浓度倍增对上述 6种作物的生物量及产量的影响均是正效应 ,对冬小麦、棉花和谷子品质的影响可能是有利的 ,对玉米品质的影响可能是不利的 ,对大豆的影响不大 ;分析了O3 浓度倍增对冬小麦、水稻、油菜和菠菜生物量、产量及品质的影响 ,结果表明O3 浓度倍增对上述 4种作物生物量的影响均是负效应 ,对冬小麦和水稻的产量影响是负效应 ,但是冬小麦和水稻籽粒中粗蛋白和 17种氨基酸含量都有所增加 ;分析了CO2 和O3 浓度复合倍增对大豆生物量、产量及品质的影响 ,结果是生物量和产量呈增加趋势 ,说明了CO2 的正效应大于O3 的负效应。采用作物模型数值模拟方法 ,分析了CO2 和O3 浓度倍增对冬小麦生物量及产量的影响。  相似文献   
77.
修正已有积温模型,提高积温稳定性,对积温指标更好地应用于农业生产实践有重要意义。基于东北地区春玉米的生长发育情况,综合分析影响积温稳定性的气象因素,订正常用的活动积温模型。在进行积温稳定性评价基础上,将订正模型应用于春玉米的发育期预报中。结果表明:温度条件是影响积温稳定性的最主要因素,基于温度因子得到的订正模型,在出苗-抽雄阶段和抽雄-成熟阶段较原模型年际间变异系数分别平均减小了0.42%和1.42%,订正模型计算的积温稳定性更好。分别利用1981-2010年及2011-2017年资料进行回代及预报检验,发现订正模型对抽雄期的预报结果改进不明显,对成熟期的预报结果误差较原活动积温模型在回代及预报检验中分别降低了3.78 d和1.1 d。  相似文献   
78.
开茂水库区岩溶发育十分复杂,发育程度在空间分布上和规模上具有差异性,在时间上形成多期次岩溶,众多影响岩溶发育的因素相互影响、相互作用。准确、完全地查明库区岩溶现象,几乎不可能,建议在重点处理已经查明的岩溶通道的基础上,预留一定的工作量,待水库蓄水后,根据蓄水后实际情况,在必要情况下进行局部、重点处理。  相似文献   
79.
东北地区未来气候变化对农业气候资源的影响   总被引:5,自引:1,他引:4  
初征  郭建平  赵俊芳 《地理学报》2017,72(7):1248-1260
为探求未来气候变化对东北地区农业气候资源的影响,本文基于区域气候模式系统输出的东北地区IPCC AR5提出的低辐射和高辐射强迫RCP_4.5(低排放)、RCP_8.5(高排放)情景下2005-2099年气象资料,通过与东北地区1961-2010年91个气象站点观测资料同化,分析了历史资料(Baseline)、RCP_4.5、RCP_8.5情景下东北地区农业热量资源和降水资源空间分布及其变化趋势。结果表明:① 年均温度空间分布自南向北降低,未来各地区温度均有升高,RCP_8.5情景下升温更明显,Baseline情景年均温度为7.70 ℃,RCP_4.5和RCP_8.5年均温度分别为9.67 ℃、10.66 ℃;其他农业热量资源随温度变化一致,具体≥ 10 ℃初日提前3 d、4 d,初霜日推迟2 d、6 d,生长季日数延长4 d、10 d,积温增加400 ℃·d、700 ℃·d;水资源稍有增加,但不明显。② 历史增温速率为0.35 ℃/10a,未来增温速率最快为RCP_8.5情景0.48 ℃/10a,高于RCP_4.5的0.19 ℃/10a。21世纪后期,RCP_8.5增温趋势明显快于RCP_4.5,北部地区增温更加速。其他农业热量资源随温度变化趋势相一致,但具体空间分布有所不同。生长季降水总体呈增加趋势,但不显著,年际间变化较大;东部地区降水增加,西部减少。未来东北地区总体向暖湿方向发展,热量资源整体增加,但与降水的不匹配可能将会对农业生产造成不利的影响。  相似文献   
80.
利用中国第3次青藏高原大气科学试验2014年7-8月改则探空试验期间获取的每天3次观测的探空数据,对该地区对流层大气垂直结构进行了研究。结果表明:改则地区海拔高度17-19 km存在逆温现象;第一对流层顶平均高度16082 m,第二对流层顶平均高度16466 m,前者出现概率远高于后者,两类对流层顶的高度均与其对流层顶的温度、气压成反比。08、14和20时(北京时)的最大风速分别出现在11.8、12.6和12.1 km高度,风速分别为16.2、16.3和15.9 m/s,风向随高度顺时针变化,对应为暖平流,由下层西南风转为上层的东南风,17 km以上高度稳定成东北风,下层主导风为西南风。在约8 km的高度上存在一个最大相对湿度聚集区,从地面开始相对湿度随高度升高而增大(逆湿现象),达到该聚集区后,随高度升高而减小。青藏高原西部雨季对流层顶折叠现象出现概率较低,可能与该季节高空急流或高空锋天气较少有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号