首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2018年10月8日,IPCC发布了《IPCC全球升温1.5℃特别报告》[1]。2016年,联合国气候变化框架公约(UNFCCC)在通过《巴黎协定》时发出的邀请,IPCC于2016年10月份决定开始编写这份报告。2017年初,IPCC选择了来自40个国家的91位作者,启动了报告的编写。这份报告的全名为《IPCC在加强全球应对气候变化威胁、实现可持续发展和努力消除贫困的背景下,关于全球升温高于工业化前水平1.5℃的影响和相关全球温室气体排放路径的全球升温1.5℃特别报告》。  相似文献   

2.
在气候系统五大圈层中,冰冻圈对气候变化高度敏感,近几十年来气候变暖已引起全球冰川、冻土、积雪和海冰等冰冻圈要素加速退缩,进而对区域水资源、生态环境、社会经济发展和人类福祉产生了深远影响。2018年10月,IPCC在韩国仁川公布了《全球1.5℃增暖特别报告》(SR1.5)。报告较系统地呈现了关于全球1.5℃温升目标的基本科学认知,并探讨了可持续发展及消除贫困目标下加强全球响应的路径。在冰冻圈相关内容方面,报告呈现了有关全球1.5℃和2℃温升下冰冻圈(主要是海冰和多年冻土)变化及其对大气圈、水圈、生物圈、岩石圈和人类圈影响的一些亮点结论,还关注了全球1.5℃和2℃温升下冰冻圈相关的气候变化热点(区)和地球系统临界因素。报告指出,随着温度不断升高,冰冻圈及其相关要素和热点(区)面临的风险将不断增加,但将全球温升控制在1.5℃而不是2℃或更高时的风险将大大降低。  相似文献   

3.
正2015年12月在巴黎召开的气候变化大会上通过了《巴黎协定》,其中提出在长期目标上,各方承诺将全球温度增幅控制在不超过2℃的水平,并向1.5℃温控目标努力,以降低气候变化风险。这个数字引起了广泛的注意,其后IPCC拟出版关于全球升温1.5℃的特别报告。由于涉及到未来的预估,需要用全球气候模式如CMIP5,因此本文从CMIP5来看全球1.5℃升温。1观测到的近10年全球温度变化  相似文献   

4.
基于CESM模式对1.5℃和2℃两种增暖情景的模拟结果,对比分析了太平洋年代际振荡(PDO)和北太平洋涡旋振荡(NPGO)在全球稳定增暖1.5℃和2℃时期与工业革命前、历史时期在强度和周期上的差异。结果表明:全球稳定增暖1.5℃和2℃时期,PDO和NPGO的强度均比历史时期弱,且主周期缩短,这可能与全球增暖情景下海洋层结增强导致的Rossby波变快有关。PDO的强度和周期在全球增暖1.5℃和2℃这两种情景下没有明显差异;而NPGO的强度在全球稳定增暖2℃时期比1.5℃时有明显减弱,且周期缩短1 a左右。因此,0.5℃升温差异对PDO的强度和周期影响较小,而对NPGO的强度和周期影响较大。  相似文献   

5.
<正>2018年秋季IPCC发布了《IPCC全球升温1.5℃特别报告》(简称SR15),报告中指出:将全球变暖限制在1.5℃需要社会各方进行快速、深远和前所未有的变革。并且说明:与将全球变暖限制在2℃相比,限制在1.5℃对人类和自然生态系统有明显的益处,同时还可确保社会更加可持续和公平。本文将进一步再思考以下几点:(1)升温1.5℃特别报告与AR5人类排放的设计的对比,即对比全球增暖1.5℃与人类排放的设计以及可能  相似文献   

6.
利用24个CMIP6全球气候模式的逐日降水模拟资料,基于广义极值分布(GEV)模型,研究了全球增暖1.5/2℃下我国20、50和100 a重现期极端降水的未来风险变化。可以发现,相对于历史时期(1995—2014年),全球升温1.5和2℃下极端降水发生概率风险空间分布相近,总体上呈现增加趋势,但额外增暖0.5℃将导致更高的风险。如50 a重现期极端降水,在增暖1.5/2℃下其重现期将分别变为17/14 a,极端降水将变得更加频繁。不同区域对气候变暖的响应存在区域差异,其中中国西部长江黄河中上游和青藏高原地区、中国东部长江黄河中下游及其以南地区,极端降水发生概率比达到3以上,局部更是达到5以上,为我国极端降水气候变化响应高敏感区域。进一步,基于概率分布函数从理论角度探讨了位置和尺度参数对发生概率风险的影响与贡献度量,并用于探讨极端降水气候平均态和变率变化对极端降水发生风险的影响,结果显示:位置和尺度参数的增量变化、风险变化率存在着显著的东西部差异,从而导致极端降水发生风险的影响因素存在差异。如中国西部尽管极端降水气候平均态和变率变化幅度不大,但因风险变化率较高,从而导致该区域的发生风险大幅增加;与之相反,中国东部风险变化率较小,但气候平均态和年际变率增幅较大,同样导致该区域风险增加依然较高;此外,相对于位置参数,全国大部分区域主要是尺度参数的变化导致极端降水未来风险增大。  相似文献   

7.
2℃阈值     
欧盟在温室气体长期减排方面一向宣传3个目标:全球平均升温幅度不超过工业化前2℃、大气中温室气体浓度控制在450×10-6CO2当量、2050年全球温室气体排放至少比1990年减少50%。2009年底于哥本哈根召开的《联合国气候变化框架公约》(UNFCCC)第15次缔约方会议(COP),在《哥本哈根协议》中接受了2℃这个目标[1],2010年底于坎昆  相似文献   

8.
《气象知识》2019,(2):43-43
IPCC发布新的评估报告,全名为《IPCC在加强全球应对气候变化威胁、实现可持续发展和努力消除贫困的背景下,关于全球升温高于工业化前水平1.5°C的影响和相关全球温室气体排放路径的全球升温1.5℃特别报告》。报告指出,将全球变暖限制在1.5℃需要社会各方进行快速、深远和前所未有的变革。  相似文献   

9.
《巴黎协定》将努力控制全球温升到2100年不超过工业化前的1.5℃确定为全球温控目标之一。继2℃目标后,1.5℃也被作为应对气候变化的全球温控目标之一。目前科学界对于1.5℃目标的研究还十分有限。已有的科学研究表明,尽管区域差异很大,将全球温升控制在1.5℃范围内地球各系统要承受的气候风险可能要低于2℃。相比于2℃目标,1.5℃目标对全球减缓行动的要求更为严苛。尽管在《巴黎协定》中各缔约方承诺了各自到2030(2025)年的减排目标,但相对于实现1.5℃目标而言仍有很大的差距。多家研究机构的模拟结果表明,如完全执行当前国家自主决定贡献(NDC),到21世纪末全球温升范围为2.2~3.4℃。截至2025年,实现当前NDC的减排承诺后,2℃温升目标下全球仍有467 Gt CO2(万亿t CO2当量)的排放空间,1.5℃温升目标下全球仅剩17 Gt CO2。到2030年,基于NDC的排放已经超过了1.5℃目标的排放量。按当前的路径来看,若想实现将全球温升控制在1.5℃的范围内,全球不仅需要立即行动并采取强有力的减排、脱碳和固碳措施,在2100年前,还必须实现负排放才有可能实现这一目标。尽管当前的科学研究仍存在很大的不确定性,但1.5℃目标已是全球努力应对气候变化的方向,也是开启未来世界低碳可持续发展的重要标志。  相似文献   

10.
《巴黎协定》正式生效, 为国际社会应对气候变化提出新的机遇与挑战,也必将对中国人口、资源和环境带来重要影响。本文结合IPCC发布的可持续发展(SSP1)、中度发展(SSP2)、局部或不一致发展(SSP3)、不均衡发展(SSP4)、常规发展(SSP5)5种共享社会经济路径,以2010年中国第六次人口普查数据为基准,综合考虑人口现状和发展政策设定不同发展路径下各省人口模型的相关参数,在全球升温控制在1.5℃和2.0℃时,对比研究中国和各省分年龄、性别、教育水平的人口演变和分布特征。结果表明:(1)全球升温1.5℃时,SSP1和SSP4路径下总人口较2010年增加0.44亿人;升温2.0℃时,SSP2和SSP3路径下较2010年分别增加0.23亿和0.67亿人,SSP5路径下减少约0.12亿人。5种路径下中国人口将在2025-2035年达到峰值,人口峰值正处于全球升温1.5℃期间。(2)全球升温1.5℃时,除了东北地区和四川、安徽省外,多数省(市)人口均较2010年有所增加;升温2.0℃时,西北、西南和以东南沿海地区为主的发达省份保持较高的人口增量,其他地区人口开始呈减少趋势。(3)在全球升温1.5℃和2.0℃期间,大部分省份人口达到峰值,其中SSP3路径下广西人口最多,可达1.13亿,其他路径下广东省人口最多,达1.53亿。(4)未来中国65岁以上老龄人口比重呈现东北高、西南低的分布特征。与全球升温1.5℃相比,升温2.0℃时的老龄化趋势进一步加重,东北地区老龄化问题最严重。采用绿色和可持续发展路径,全球升温控制在2.0℃之内是中国社会经济发展的科学选择。  相似文献   

11.
正2016年4月在肯尼亚内罗毕召开的IPCC第43次全会上,决定接受来自UNFCCC的邀请,由IPCC第一、二、三工作组联合编写《在加强全球应对气候变化威胁、可持续发展和消除贫困背景下全球升温1.5℃的影响及相关的温室气体排放路径》特别报告(以下简称特别报告)。为此,IPCC于2016年8月15—18日在瑞士日内瓦召开了特别报告大纲编写研讨会。IPCC主席、副主席,第一、二、三工作组和清单工作组联合主席以及有关专家等100多人  相似文献   

12.
极端温度事件不仅影响人类健康,而且易造成重大社会经济损失,是引起重大气候灾害的原因之一。对于易受气候变化影响的高敏感地区来说,确定区域气候对不同程度全球变暖的响应至关重要。本文基于区域气候降尺度试验-东亚区域(CORDEX-EAS)数据集,预估了1.5 ℃和2.0 ℃全球升温水平(Global Warming Levels,GWLs)下成渝经济区及周边地区极端温度的未来变化趋势。结果表明:成渝经济区及周边地区极端高温指数在两种升温水平下均呈现明显上升趋势,而极端低温指数呈现下降趋势。极端冷暖事件具有局部对称性特征,极端暖事件的变化幅度要大于极端冷事件的变化幅度。极端温度指数对两种升温水平的响应具有差异性,除气温日较差外,其他指数的变化幅度在2.0 ℃GWL下大于在1.5 ℃GWL下。此外,随着全球平均升温幅度的增大,未来极端温度事件的强度和发生频率也会相应提升,极端温度事件对额外0.5 ℃的GWL升温阈值具有高度敏感性。本文研究了1.5 ℃和2.0 ℃GWLs下成渝经济区及周边地区极端温度的未来演变,再次强调了将全球平均升温幅度限制在1.5 ℃以内的重要性。  相似文献   

13.
气候变化对重庆高温和旱涝灾害的影响   总被引:2,自引:0,他引:2  
白莹莹  高阳华  张焱  李永华  王中 《气象》2010,36(9):47-54
利用重庆地区1961—2006年逐日气象观测资料,研究了气候变化对重庆高温和旱涝灾害的影响。结果表明:重庆区域显著的增暖开始于20世纪90年代后期,突变检验结果显示气温距平的突变出现在1997年。增暖后,极端高温事件发生频次增加趋势明显,高温热浪风险显著上升,极端降水事件发生频次也呈现出显著增加趋势,洪涝灾害的风险不断上升。进一步分析了区域平均各级别降水日数的变化趋势,结果显示小雨和中雨日数减少趋势明显,使得干旱的风险增大。将区域平均气温距平序列分为全球气候变化对重庆区域平均气温的影响和重庆区域平均气温的自身变率两部分,发现在增暖后,全球气候变化对区域气温变化的贡献较增暖前增大。分别计算2006年全球气候变化和区域自身变率对重庆异常气温的贡献,发现2006年重庆异常高温可能是受全球气候变化和区域自身的变率共同作用的结果,但以区域自身的变率为主。  相似文献   

14.
潮白河流域为北京主要供水源,其水资源量对北京用水保障至关重要,因此开展该流域在全球1.5℃和2.0℃升温下的径流预估研究具有现实意义。利用1961—2001年WATCH数据对SWAT水文模型进行率定和验证,在此基础上,应用第五次耦合模式比较计划(CMIP5)中5个全球气候模式在典型浓度路径(RCP4.5、RCP6.0和RCP8.5)下预估的全球1.5℃和2.0℃升温下的数据驱动SWAT模型,开展了潮白河流域气温、降水及径流量的变化预估研究,并量化评估由气候模式和RCPs导致的水文效应的不确定性。结果表明:(1) SWAT模型基本能较好地模拟潮白河流域的月径流特征,应用该模型进行气候变化对径流量的影响评估是可行的。(2)在全球1.5℃和2.0℃升温下,潮白河流域年平均温度较基准期(1976—2005年)分别增加1.5℃和2.2℃,年平均降水量也增加4.9%和7.0%。预估的年径流量在全球1.5℃升温下总体略有增加,盛夏和秋初的径流量占全年的比例也有所增加;在全球2.0℃升温下,年径流量增幅达30%以上,但夏季径流量占全年的比例明显减少。(3)在全球2.0℃升温下,潮白河流域极端丰水流量明显增加,洪涝发生风险增大。(4)未来气温、降水量和径流量的预估都存在一定的不确定性,在全球2.0℃升温下不确定性更大;相对而言,径流量的不确定性要远大于降水量的不确定性;无论是全球1.5℃升温下还是2.0℃升温下,预估不确定性主要来源于全球气候模式。  相似文献   

15.
基于1961—2005年华南冬季逐日最低温度观测资料,以及参与CMIP5的IPSL-CM5A-MR、MPI-ESM-MR、CMCC-CMS 3个模式的历史模拟和未来排放情景预估数据,从过程角度定义和提取华南冬季极端低温事件及其特征指标,并通过引入极值理论构建极端低温事件的概率分布模型(Cold Spell Model, CSM),刻画其强度、频数和持续时间特征分布;进一步结合基于累计概率分布变换的偏差订正方法降低模式模拟的偏差,探讨了RCP4.5情景下全球升温1.5℃和2℃时极端低温事件的风险变化。研究表明:(1)CSM模型能够较好地拟合极端低温特征概率分布,大部分台站通过了K-S或卡方检验;(2)相对于观测,模式模拟极端低温存在一定偏差,经偏差订正后,各站点BS评分接近于0,SS评分普遍提高到0.88左右;(3)全球增暖背景下,华南地区极端低温呈现强度减弱、频数减少、持续时间缩短的特征。全球增暖1.5、2.0℃背景下,华南大多数地区极端低温事件平均强度减弱,频次降低,持续时间变化具有明显的空间差异;每年发生1次极端低温事件的概率增加,但每年发生3、5次的概率减少;增暖1.5℃下极端低...  相似文献   

16.
IPCC《气候变化中的海洋和冰冻圈特别报告》评估了全球和区域海洋的气候变化及其对生态系统和人类社会的影响、风险及应对措施。结果表明,近几十年来,海洋的物理和化学性质发生了明显变化,如升温、酸化、脱氧和营养盐减少等气候致灾因子(事件)的危害(险)性不断加剧(高信度)。这种变化正在影响从上层到底层的海洋生态系统和人类社会的可持续发展,如海洋初级生产力的下降、物种地理分布的变迁、渔业资源潜在渔获量的下降以及食品供应的减少(高信度)。在气候变化与非气候人为干扰因素的综合影响下,随着温室气体排放的增加(从RCP2.6到RCP8.5情景),到21世纪末,几乎所有类型的海洋和海岸带生态系统将处于高或很高的风险水平(高信度);其中,暖水珊瑚礁生态系统尤其严重,如果全球升温1.5℃和2℃,将分别消失70%~90%和99%以上(很高信度)。然而,当前多种减缓气候变化的海洋应对措施的作用较小,有的可能带来生态危险,而许多降低气候风险的海洋适应措施的作用也很有限,特别是在RCP8.5情景下的作用更小;未来海洋生态系统的风险水平在RCP2.6情景下均低于RCP8.5情景(很高信度)。因此,这凸显了减缓气候变化尤其是减缓和适应气候变化综合治理的重要性。  相似文献   

17.
《巴黎协定》提出全球暖化程度在21世纪末相对工业革命前控制在2℃以内的目标。青藏高原高寒植被对全球变暖非常敏感,在2℃温升这个边界增温条件下研究高原植被对气候变化的响应关系到高原生态安全问题,有重大现实意义。本文基于CMIP5多模式模拟预测结果研究了高原植被对2℃温升的响应,并探讨了高原植被对于气候因子变化的敏感性,得到主要结论如下:在全球2℃温升背景下,高原植被叶面积指数(Leaf Area Index, LAI)较历史参考期显著增加,高原变绿,其中高原中部LAI和植被碳存储增加最为显著,三江源是植被LAI增加较快的区域。增温后裸地面积迅速减少,植被覆盖率总体增加,大部分地区草地呈增加趋势,森林减少趋势变缓,说明在2℃温升期高原植被有所改善。在全球2℃温升背景下,高原植被覆盖率表现出对温度和降水率等气候因子更强的依赖性和敏感性,在增暖环境中,气温仍是影响高原植被生态系统变化的主控因子。  相似文献   

18.
气候变化影响的最新认知   总被引:29,自引:5,他引:24  
政府间气候变化专门委员会(IPCC)第二工作组于2007年4月6日正式发布了第四次评估报告,该报告客观、全面而审慎地评估了气候变化已有的和未来的可能影响。现有观测证据表明,人为增暖可能已对许多自然和生物系统产生了可辨别的影响,但由于适应以及非气候因子的作用,许多影响还难以辨别。21世纪中期,某些中纬度和热带干旱地区年平均河流径流量和可用水量会减少10%~30%;如果全球平均温度增幅超过1.5~2.5℃,目前所评估的20%~30%动植物物种可能面临灭绝的风险会增大;从全球角度看,局地平均温度增加1~3℃,预计粮食生产潜力会增加,但若超过这一范围,则会减少。兼顾适应和减缓的措施能够降低气候变化相关风险。  相似文献   

19.
工业化前     
2009年底于哥本哈根召开的《联合国气候变化框架公约》(UNFCCC)第15次缔约方会议(COP15),在《哥本哈根协议》中接受了2℃阈值的目标,即把全球平均温度的上升限制在不超过工业化前2℃[1]。2010年底于坎昆召开的第16次缔约方会议再次确认了2℃的目标[2]。但什么时候是工业化前没有说明。在IPCC第四次评估报告(AR4)的术语表中把  相似文献   

20.
王莹  马红云  李海俊 《气象科学》2021,41(3):285-294
选取中国东部长江三角洲城市群区域作为研究对象,采用中国区域最新的土地覆盖资料ChinaLC,利用中尺度气象模式WRF(Weather Research and Forecasting Model)对国际耦合模式比较计划第五阶段(CMIP5)中CESM(Community Earth System Model)气候模式提供的RCP4.5(Representative Concentration Pathway 4.5)情景预估结果进行动力降尺度,以此模拟研究了未来增温1.5℃/2.0℃时的区域气候变化情况。结果表明:CESM数据作为侧边界资料驱动WRF模式得到的降尺度模拟结果,与历史时期(1996—2005年)的气温观测数据相比,在空间分布上有较高的吻合度,该降尺度方案可以为未来区域气温变化的预估提供较为可靠的数据;长三角地区在到达全球增温1.5℃(2025—2034年)/2.0℃(2042—2051年)时,区域平均气温与历史同期相比分别升高了0.8℃和1.47℃;空间分布上,增温最明显的区域主要集中在城市及其周边镶嵌体区域;随着全球增暖,区域平均高温热浪频次在增温1.5℃/2.0℃时期较历史同期分别增加了47%和100%,热浪强度分别增加了71%和129%;进一步通过对人体舒适度分析发现,与2.0℃升温阈值相比,控制增暖在1.5℃以内,极不舒适覆盖区域影响的人口数预计可减少5 602.9万人。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号