首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   4篇
  国内免费   18篇
测绘学   4篇
大气科学   23篇
地球物理   1篇
地质学   9篇
海洋学   4篇
综合类   1篇
自然地理   4篇
  2023年   5篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2016年   3篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2008年   1篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  1996年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
11.
湘东北中元古代冷家溪群的解体及其地质意义   总被引:3,自引:0,他引:3  
近年来1:5万和1:25万区域地质调查研究发现,湘东北地区原中元古代冷家溪群实际上包含了时代更老的不同构造环境的物质建造,其应予以解体,分离出基本无序的变质沉积-火山岩系,使之与区域上中元古代冷家溪群原有的基本属性能对比。根据对这些变质沉积-火山岩系的岩石组合、岩石学、同位素年代学等研究,初步厘定出“涧溪冲岩群”、“仓溪岩群”和“连云山杂岩”3个群级构造-岩石地层单位,属绿片岩-角闪岩相,其原岩形成地质时代是新太古-古元古代。  相似文献   
12.
基于集合卡尔曼滤波的源反演方法是估计排放源、提高空气质量模拟和预报精度的有效方法。为构建排放源与污染物浓度之间的误差协方差矩阵,该方法通常需要运行几十次大气化学传输模式。庞大的计算量限制了该方法的应用,使其无法为实时预报系统快速更新排放源。本研究发展了一种基于集合最优插值的排放源反演方法。该方法使用历史集合数据构建误差协方差矩阵,仅需一次常规的空气质量模拟便可根据观测模拟差异反演排放源,从而显著降低计算量。本文使用该方法同化2015年1月全国1107个地面站点观测的CO小时浓度数据,结合2014年1月的历史集合数据集,估计2015年1月全国15 km分辨率的CO排放源。该方案反演的全国CO排放总量仅比使用2015年1月集合数据集的反演量高1%,表明历史时段与反演时段的气象条件差异对月均CO排放的影响有限。使用历史集合数据集更新的排放源再次模拟可将全国349个独立验证站点的平均低估从0.74 mg m?3降至0.01 mg m?3,均方根误差降低18%,表明该方法可快速更新排放源并降低其不确定性。  相似文献   
13.
通过整理《理虚元鉴》中的劳嗽相关记载,总结劳嗽的病因为先天不足、后天内伤、外感风邪、医药误治,病机以肺脾肾虚为本、风寒痰火为标,治则为清补兼施、中和为治,以清金百部汤为基础方辨证加减治疗。结合咳嗽变异性哮喘病因及临床特征,从未病先防、分期辨证、处方用药、调摄养护4个方面探讨劳嗽理论在咳嗽变异性哮喘中的应用,以期为临床防治咳嗽变异性哮喘提供参考。  相似文献   
14.
气象预报是影响大气重污染预报精度的关键所在。针对2016年12月16~21日北京市一次重污染过程,开展了中尺度气象模式WRF的参数化方案配置敏感性试验。对微物理过程、长波辐射过程、短波辐射过程、陆面过程、边界层过程、近地面过程以及积云对流参数化过程进行组合优选,共设计51组参数化方案组合,分析不同模拟方案下北京市8个气象站点温度、相对湿度、10 m风速的模拟精度及其敏感性。试验结果表明:温度模拟对长波过程参数化方案最为敏感,集合离散度达2.4~7.4°C,再次是短波过程参数化方案;相对湿度模拟也对长波过程参数化方案最敏感,再次是陆面过程;风速模拟对不同过程参数化方案的敏感性程度差异不大。通过模拟结果与观测的统计对比,优选出模拟误差最小的方案组合为Lin微物理方案、RRTMG长波方案、RRTMG短波方案、Tiedtke积云对流方案、Noah陆面方案、MYNN 3rd边界层方案和MYNN近地面方案,并将其与集合平均、基准方案进行对比。对于集合平均来说,其温度模拟与观测相关系数为0.69,高于基准方案,其模拟偏差与均方根误差比基准方案低25%和11%;集合平均的相对湿度和风速模拟相比基准方案变化较小。与集合平均相比,优选方案能同时改进温度、相对湿度和风速模拟,使温度模拟偏差和均方根误差比基准方案下降35%和17%,使相对湿度模拟偏差和均方根误差下降43%和13%,使风速模拟偏差和均方根误差下降33%和24%。以上结果表明,参数化方案的敏感性试验和优选能显著减小重污染期间气象要素的模拟误差,重污染预报改进需重点关注参数化方案模拟上的不确定性。本研究也发现MYNN3rd边界层方案在这次重污染过程的气象要素模拟上具有良好性能,可为未来重污染预报改进提供参考。  相似文献   
15.
重庆市城市热岛研究的现状需求和建议   总被引:1,自引:0,他引:1  
分析了重庆市为创建国家生态园林城市而产生对城市热岛评估和研究的需求、城市热岛研究现状以及面临的一些问题,设计了面向创建国家生态园林城市的城市热岛研究方案,总结了城市热岛的基本规律。提出了以下研究城市热岛的建议以满足创建国家生态园林城市的需求和调控城市热岛:根据国家生态园林城市的评价标准研究得出权威的、准确的城市热岛现状评价结果;通过高分辨率数值模式开展模拟实验研究,明确山脉、江河等特殊地理环境在创建国家生态园林城市中的利、弊作用;保护利用河谷风和山谷风,加强城区自然通风,以调控城市热岛。   相似文献   
16.
孙小超  唐晓霏  魏以宽  陈豪  赵鹏 《地理空间信息》2019,17(4):54-56,59,I0003
为研究北斗卫星导航系统(BDS)的定位性能,根据实测数据对比分析了BDS/GPS组合系统的定位结果,对基于BDS的数据可用性进行了分析,并对BDS与GPS分别在RTK模式下的定位结果精度进行分析。研究表明:BDS/GPS组合系统的兼容性与融合性得到了验证,基于BDS的数据可用性良好,基于BDS的RTK测量成果精度可靠。  相似文献   
17.
18.
大气挥发性有机物(VOCs)是导致臭氧污染的关键前体物,是城市空气质量建模不可或缺的重要组成部分,但由于其非常复杂的构成和来源以及监测数据缺乏,目前对其模拟精度的了解仍非常有限。本文利用嵌套网格空气质量模式预报系统(NAQPMS)对珠江三角洲(简称珠三角)地区2017年9月21日至11月20日的VOCs开展了模拟试验,并利用光化学监测网8个地面站点的VOCs浓度监测数据,对模式模拟的关键VOCs组分进行了精度评估。结果发现,模式对强活性的甲苯、乙烯和二甲苯具有较高的模拟精度,模拟浓度偏差百分比为0.4%~26.6%,模拟能较好再现其日均浓度变化趋势和日变化的双峰特征。但是模式对化学反应活性强且与植物排放密切相关的异戊二烯具有很大的模拟偏差,偏差比近100%,无法再现其白天浓度高、夜间浓度低的观测日变化特征。通过分析发现,现有模拟系统主要考虑人为污染物排放而未考虑生物源排放,可能是导致这一模拟偏差的关键原因。同时,评估结果也表明模式在VOCs空间分布模拟上仍面临很大的不确定性。本文结果揭示了珠三角VOCs模拟面临的关键不确定性,表明融合VOCs观测数据来揭示并减小VOCs模拟的不确定性具有非常迫切的需求。  相似文献   
19.
城市边界层高度变化特征与颗粒物浓度影响分析   总被引:8,自引:0,他引:8  
利用2007年以来西安郊区泾河观象台大气细颗粒物质量浓度资料和气象自动站资料以及探空资料,采用国标法、罗氏法和位温法三种不同方法计算边界层高度。结果表明,三种方法得到的结果有一定差异,但日变化分布一致,可以用于分析边界层高度变化特征。边界层高度季节变化明显,春、夏、秋和冬季边界层高度分别是1300,1200,820和800 m。边界层日变化与颗粒物浓度呈显著负相关关系,即冬季边界层顶高度低,三种粒径颗粒物质量浓度高,夏季则相反。PM2.5、PM1.0、PM1.0分别在PM10、PM2.5、PM10含量中有明显月变化,表明西安除了本地污染源之外,春季易受上游风沙天气影响。  相似文献   
20.
北京地区一次空气重污染过程的目标观测分析   总被引:1,自引:1,他引:0  
针对北京市2016年12月16~21日的空气重污染过程进行了回报试验,探讨了该次事件预报的目标观测敏感区。使用新一代高分辨率中尺度气象模式(Weather Research Forecasting,WRF)和嵌套网格空气质量模式(Nested Air Quality Prediction Model System,NAQPMS),针对初始气象场的不确定性,通过4套初始场资料识别了影响北京地区细颗粒物(PM2.5)预报水平的目标观测敏感变量及其敏感区。结果表明:当综合考虑初始气象场的风场、温度、比湿不确定性的影响时,发现改善黑龙江区域上述气象要素的初始场精度,对北京地区PM2.5预报不确定的减小最显著;当分别考察风场、温度、比湿的不确定性的影响时,发现初始风场精度的改善,尤其是黑龙江区域风场精度的改善,能够更大程度地减小北京地区PM2.5的预报误差,对北京东南地区的PM2.5预报误差的减小甚至可达到40%以上。因此,优先对黑龙江区域的气象场,尤其是该区域的风场进行目标观测,并将其同化到预报模式的初始场中,将会有效提高初始气象场的质量,进而大大减小北京地区PM2.5浓度的预报误差,提高北京地区空气质量的预报技巧。初始风场代表了北京地区该次空气重污染事件预报的目标观测变量,而黑龙江地区则是该目标观测的敏感区域。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号