首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24480篇
  免费   5264篇
  国内免费   7277篇
测绘学   3570篇
大气科学   4246篇
地球物理   5444篇
地质学   14137篇
海洋学   3705篇
天文学   643篇
综合类   1905篇
自然地理   3371篇
  2024年   146篇
  2023年   434篇
  2022年   1298篇
  2021年   1462篇
  2020年   1292篇
  2019年   1389篇
  2018年   1768篇
  2017年   1606篇
  2016年   1443篇
  2015年   1628篇
  2014年   1471篇
  2013年   1742篇
  2012年   2459篇
  2011年   2179篇
  2010年   1771篇
  2009年   1798篇
  2008年   1734篇
  2007年   1573篇
  2006年   1602篇
  2005年   1994篇
  2004年   1641篇
  2003年   1325篇
  2002年   915篇
  2001年   746篇
  2000年   533篇
  1999年   282篇
  1998年   122篇
  1997年   109篇
  1996年   63篇
  1995年   59篇
  1994年   55篇
  1993年   45篇
  1992年   41篇
  1991年   47篇
  1990年   48篇
  1989年   20篇
  1988年   16篇
  1987年   26篇
  1986年   11篇
  1985年   13篇
  1984年   11篇
  1983年   12篇
  1982年   5篇
  1980年   5篇
  1979年   12篇
  1978年   5篇
  1976年   6篇
  1975年   4篇
  1957年   7篇
  1954年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
内蒙古1∶5万乌音呼日勒庙等四幅区域地质矿产调查项目取得的新进展及主要成果为: 根据岩石组合、动植物化石及同位素年龄等,重新厘定、划分了16个岩石地层填图单位,在多个组段沉积岩层位中首次发现丰富的动、植物化石,建立了各地层年代学格架; 将侵入岩重新解体划分为4个填图单元,并建立了侵入岩年代学格架; 新发现1处规模较大的韧性变形带,主要为逆—左行走滑韧性断层,时代归属于中三叠世末期,为额尔古纳河—阿龙山NE向韧性变形域的南部延伸; 新发现矿(化)点20处,其中金属矿点3处,金属矿化点6处,非金属矿点9处,非金属矿化点2处; 总结了该区成矿规律,圈定了成矿远景区及找矿靶区。  相似文献   
992.
渝东北地区五峰组—龙马溪组暗色泥页岩沉积厚度介于30.92~164.47m之间,其中在朝阳镇咸池剖面及田坝一带厚度最大,往研究区东西两侧具有减薄的趋势。全区总有机碳含量平均3.32%,中部(平均3.93%)和西部(平均3.59%)相对东部(平均2.77%)具有更高的有机质丰度。有机质以I型腐泥型为主,西部个别剖面及东部栗子坪一带夹少量Ⅱ_1—Ⅱ_2型干酪根,其成熟度普遍处于高成熟—过成熟阶段,呈现自北向南升高的趋势。石英、脆性矿物含量普遍较高(尤其是中西部区块),黏土矿物较低,更易产生储气裂缝及利于后期压裂。储层特征方面,中部地区泥页岩具有更高的孔隙度和较低的渗透率,同时比表面积也相对更高,以有机质孔隙为主。中部区块田坝—朝阳—文峰一带含气性最好,结合页岩厚度、总有机碳含量分布、储层条件及构造保存条件分析,本区中部区块田坝—朝阳—文峰一带具有更好的页岩气勘探前景,是该区下一步勘探的重点区域。  相似文献   
993.
大别山北缘的安参1井是合肥盆地最深的一口参数井,钻遇前侏罗纪基底地层达千米以上,为一套不含煤层(线)或灰岩以泥岩为主的地层,与周缘华北陆块和大别造山带等构造单元的地层对比困难。因缺少宏观化石记录和明确的定年依据,其时代归属一直存在争议,制约了对这一套特殊地层所反映的地质信息的进一步挖掘。为进一步明确该套特殊地层的地质时代,本项研究对安参1井4160~5152m井段大量岩心和岩屑样品进行了微古化石分析,在其中5块样品中发现了保存良好的孢粉化石647粒,共计23属51种及部分未定种。根据对孢粉化石的类型、属种和含量的分析,将其自下而上划分为两个孢粉化石组合:Ⅰ.Densosporites reynoldburgensisLaevigatosporites perminutus;Ⅱ.Triquitrites-Macrotorispora media。孢粉组合Ⅰ中蕨类植物孢子以平均含量87.67%占绝对优势,代表分子有Laevigatosporites perminutus,Lycospora rotunda,Patellisporites meishanesis等,裸子植物花粉均为单囊粉属Florinites;孢粉组合Ⅱ中,蕨类植物孢子平均含量降低至53.78%,其中蕨类孢子Lycospora rotunda消失,Leiotriletes adnatus,Triquitrites,Crassipora等含量下降,并有特征分子大一头沉孢属Macrotorispora出现,裸子植物花粉含量和丰富度明显增加,以柯达粉属Cordaitina为主。经过与华北其他地区孢粉组合特征的对比分析,上述两个孢粉组合分别与华北陆块晚古生代二叠系太原组和上石盒子组具有明确的相似性,与早期和中晚期华夏植物群面貌相一致,反映了裸子植物逐渐繁盛、属种越来越丰富的过程,孢粉组合Ⅰ和Ⅱ的地质时代分别为晚石炭世晚期至早二叠世早期和晚二叠世,为安参1井前侏罗纪基底存在石炭—二叠系提供了直接证据,也为合肥盆地沉积环境和古气候分析提供了新资料。  相似文献   
994.
Aplite dikes intruding the Proterozoic 1.42(±?3) Ga Longs Peak-St. Vrain Silver Plume-type peraluminous granite near Jamestown, Colorado, contain F, P, and rare earth element (REE)-rich globular segregations, with 40–46% REE, 3.7–4.8 wt% P2O5, and 5–8 wt% F. A combination of textural features and geochemical data suggest that the aplite and REE-rich globular segregations co-existed as two co-genetic liquids prior to their crystallization, and we propose that they are formed by silicate–fluoride?+?phosphate (+?S?+?CO2) melt immiscibility following ascent, cooling, and decompression of what was initially a single homogeneous magma that intruded the granite. The REE distribution coefficients between the silica-rich aplites and REE-rich segregations are in good agreement with experimentally determined distribution coefficients for immiscible silicate–fluoride?+?phosphate melts. Although monazite-(Ce) and uraninite U–Th–Pb microprobe ages for the segregations yield 1.420(±?25) and 1.442(±?8) Ga, respectively, thus suggesting a co-genetic relationship with their host granite, εNd1.42Ga values for the granites and related granitic pegmatites range from ??3.3 to ??4.7 (average ??3.9), and differ from the values for both the aplites and REE-rich segregations, which range from ??1.0 to ??2.2 (average ??1.6). Furthermore, the granites and pegmatites have (La/Yb)N <50 with significant negative Eu anomalies, which contrast with higher (La/Yb)N >100 and absence of an Eu anomaly in both the aplites and segregations. These data are consistent with the aplite dikes and the REE-rich segregations they contain being co-genetic, but derived from a source different from that of the granite. The higher εNd1.42Ga values for the aplites and REE-rich segregations suggest that the magma from which they separated had a more mafic and deeper, dryer and hotter source in the lower crust or upper mantle compared to the quartzo-feldspathic upper crustal source proposed for the Longs Peak-St. Vrain granite.  相似文献   
995.
The Pozanti–Karsanti ophiolite (PKO) is one of the largest oceanic remnants in the Tauride belt, Turkey. Micro-diamonds were recovered from the podiform chromitites, and these diamonds were investigated based on morphology, color, cathodoluminescence, nitrogen content, carbon and nitrogen isotopes, internal structure and inclusions. The diamonds recovered from the PKO are mainly mixed-habit diamonds with sectors of different brightness under the cathodoluminescence images. The total δ13C range of the PKO diamonds varies between ??18.8 and ??28.4‰, with a principle δ13C mode at ??25‰. Nitrogen contents of the diamonds range from 7 to 541 ppm with a mean value of 171 ppm, and the δ15N values range from ??19.1 to 16.6‰, with a δ15N mode of ??9‰. Stacking faults and partial dislocations are commonly observed in the Transmission Electron Microscopy foils whereas inclusions are rather rare. Combinations of (Ca0.81Mn0.19)SiO3, NiMnCo-alloy and nano-sized, quenched fluid phases were observed as inclusions in the PKO diamonds. We believe that the 13C-depleted carbon signature of the PKO diamonds derived from previously subducted crustal matter. These diamonds may have crystallized from C-saturated fluids in the asthenospheric mantle at depth below 250 km which were subsequently carried rapidly upward by asthenospheric melts.  相似文献   
996.
Garnet crystals with quartz inclusions were hydrothermally crystallized from oxide starting materials in piston–cylinder apparatuses at pressures from 0.5 to 3 GPa and temperatures ranging from 700 to 800 °C to study how entrapment conditions affect remnant pressures of quartz inclusions used for quartz-in-garnet (QuiG) elastic thermobarometry. Systematic changes of the 128, 206 and 464 cm?1 Raman band frequencies of quartz were used to determine pressures of quartz inclusions in garnet using Raman spectroscopy calibrations that describe the P–T dependencies of Raman band shifts for quartz under hydrostatic pressure. Within analytical uncertainties, inclusion pressures calculated for each of the three Raman band frequencies are equivalent, which suggests that non-hydrostatic stress effects caused by elastic anisotropy in quartz are smaller than measurement errors. The experimental quartz inclusions have pressures ranging from ??0.351 to 1.247 GPa that span the range of values observed for quartz inclusions in garnets from natural rocks. Quartz inclusion pressures were used to model P–T conditions at which the inclusions could have been trapped. The accuracy of QuiG thermobarometry was evaluated by considering the differences between pressures measured during experiments and pressures calculated using published equation of state parameters for quartz and garnet. Our experimental results demonstrate that Raman measurements performed at room temperature can be used without corrections to estimate garnet crystallization pressures. Calculated entrapment pressures for quartz inclusions in garnet are less than ~?10% different from pressures measured during the experiments. Because the method is simple to apply with reasonable accuracy, we expect widespread usage of QuiG thermobarometry to estimate crystallization conditions for garnet-bearing silicic rocks.  相似文献   
997.
In order to investigate the origin of the high conductivity anomalies geophysically observed in the mid-lower crust of Tibet Plateau, the electrical conductivity of plagioclase–NaCl–water system was measured at 1.2 GPa and 400–900 K. The relationship between electrical conductivity and temperature follows the Arrhenius law. The bulk conductivity increases with the fluid fraction and salinity, but is almost independent of temperature (activation enthalpy less than 0.1 eV). The conductivity of plagioclase–NaCl–water system is much lower than that of albite–NaCl–water system with similar fluid fraction and salinity, indicating a strong effect of the major mineral phase on the bulk conductivity of the brine-bearing system. The high conductivity anomalies of 10?1 and 100 S/m observed in the mid-lower crust of Tibet Plateau can be explained by the aqueous fluid with a volume fraction of 1 and 9%, respectively, if the fluid salinity is 25%. The anomaly value of 10?1 S/m can be explained by the aqueous fluid with a volume fraction of 6% if the salinity is 10%. In case of Southern Tibet where the heat flow is high, the model of a thin layer of brine-bearing aqueous fluid with a high salinity overlying a thick layer of partial melt is most likely to prevail.  相似文献   
998.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.  相似文献   
999.
Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (\({f_{{{\text{O}}_{\text{2}}}}}\)), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\) relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ?51Vmag-gl = ? 0.63?±?0.09‰ at FMQ ? 1 to ? 0.92?±?0.11‰ (SD) at ≈?FMQ?+?5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\). These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.  相似文献   
1000.
This paper investigates the origin of low-δ18O quartz porphyry dykes associated with the 144–133 Ma Koegel Fontein Igneous Complex, which was intruded during the initial phase of breakup of Africa and South America. The 25-km diameter Rietpoort Granite is the largest and youngest phase of activity, and is roofed by a 10-km diameter pendant of gneiss. Quartz porphyry (QP) dykes, up to 15 m in width, strike NW–SE across the complex. The QP dykes that intruded outside the granite have similar quartz phenocryst δ18O values (average 8.0‰, ± 0.7, n?=?33) to the granite (average 8.3?±?1.0, n?=?7). The QP dykes that intruded the roof pendant have quartz phenocrysts with more variable δ18O values (average 1.6‰, ± 2.1, n?=?55). In some cases quartz phenocrysts have δ18O values as low as ? 2.5‰. The variation in δ18O value within the quartz crystal population of individual dykes is small relative to the overall range, and core and rim material from individual quartz phenocrysts in three samples are identical within error. There is no evidence that quartz phenocryst δ18O values have been affected by fluid–rock interaction. Based on a ?quartz?magma value of 0.6‰, magma δ18O values must have been as low as ? 3.1‰. Samples collected along the length of the two main QP dykes that traverse the roof pendant have quartz phenocryst δ18O values that range from +?1.1 to +?4.6‰, and ? 2.3 to +?5.6‰, respectively. These δ18O values correlate negatively (r = ? 0.96) with initial 87Sr/86Sr, which can be explained by the event that lowered δ18O values of the source being older than the dykes. We suggest that the QP dykes were fed by magma produced by partial melting of gneiss, which had been variably altered at high temperature by 18O-depleted meteoric water during global glaciation at ~?550 Ma. The early melts had variable δ18O value but as melt pockets interconnected during melting, the δ18O values approached that of average gneiss. Variable quartz phenocryst δ18O values in the same dyke can be explained by vertical emplacement, at variable rates of ascent along the dyke. The lateral variation in quartz, and hence magma δ18O value at a particular point along a single dyke would depend on the rate of ascent of magma at that point along the dyke, and the ‘age’ of the particular magma batch.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号