首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Spinel lherzolite and wehrlite xenoliths from the Cenozoic Calatrava volcanic field carry the geochemical imprint of metasomatic agents that have affected the subcontinental lithospheric mantle beneath Central Iberia. Some xenoliths (mainly wehrlites) were enriched in REE, Sr, P, and CO2 by silicic-carbonate-rich metasomatic melts/fluids, while others record the effects of subduction-related hydrous silicate fluids that have precipitated amphibole and induced high Ti/Eu in primary clinopyroxene. The petrographic observations and geochemical data suggest that interstitial glass in the xenoliths represent the quenched products of Si-rich melts that infiltrated the mantle peridotite shortly before the entrainment of the xenoliths in the host magmas that erupted ca 2 million years ago. During their infiltration, the metasomatic melts reacted with peridotite, resulting in silica enrichment, while remobilizing grains of iron-rich monosulfide solid solution (Fe-rich Mss) initially enclosed in, or intergranular to, primary olivine and pyroxenes. In situ laser ablation inductively coupled plasma-mass spectrometry analysis of single sulfide grains reveals that the Fe-rich Mss in glass shows platinum-group element (PGE) patterns and 187Os/188Os compositions identical to the Fe-rich Mss occurring as inclusions in, or at grain boundaries of primary silicates. Moreover, independent of its microstructural position, Fe-rich Mss exhibits PGE and 187Os/188Os signatures typical of Mss either residual after partial melting or crystallized directly from sulfide melts. Our findings reveal that young metasomatic melt(s)/fluid(s) may carry remobilized sulfides with PGE and Os-isotopic signatures identical to those of texturally older sulfides in the peridotite xenolith. These sulfides thus still provide useful information about the timing and nature of older magmatic events in the subcontinental mantle.  相似文献   

2.
The fluorine (F) and chlorine (Cl) contents of arc magmas have been used to track the composition of subducted components, and the F and Cl contents of MORB have been used to estimate the halogen content of depleted MORB mantle (DMM). Yet, the F and Cl budget of the Earth’s upper mantle and their distribution in peridotite minerals remain to be constrained. Here, we developed a method to measure low concentrations of halogens (≥0.4 µg/g F and ≥0.3 µg/g Cl) in minerals by secondary ion mass spectroscopy. We present a comprehensive study of F and Cl in co-existing natural olivine, orthopyroxene, clinopyroxene, and amphibole in seventeen samples from different tectonic settings. We support the hypothesis that F in olivine is controlled by melt polymerization, and that F in pyroxene is controlled by their Na and Al contents, with some effect of melt polymerization. We infer that Cl compatibility ranks as follows: amphibole > clinopyroxene > olivine ~ orthopyroxene, while F compatibility ranks as follows: amphibole > clinopyroxene > orthopyroxene ≥ olivine, depending on the tectonic context. In addition, we show that F, Cl, Be and B are correlated in pyroxenes and amphibole. F and Cl variations suggest that interaction with slab melts and fluids can significantly alter the halogen content of mantle minerals. In particular, F in oceanic peridotites is mostly hosted in pyroxenes, and proportionally increases in olivine in subduction-related peridotites. The mantle wedge is likely enriched in F compared to un-metasomatized mantle, while Cl is always low (<1 µg/g) in all tectonic settings studied here. The bulk anhydrous peridotite mantle contains 1.4–31 µg/g F and 0.14–0.38 µg/g Cl. The bulk F content of oceanic-like peridotites (2.1–9.4 µg/g) is lower than DMM estimates, consistent with F-rich eclogite in the source of MORB. Furthermore, the bulk Cl budget of all anhydrous peridotites studied here is lower than previous DMM estimates. Our results indicate that nearly all MORB may be somewhat contaminated by seawater-rich material and that the Cl content of DMM could be overestimated. With this study, we demonstrate that the halogen contents of natural peridotite minerals are a unique tool to understand the cycling of halogens, from ridge settings to subduction zones.  相似文献   

3.
The mineral and geochemical compositions of noble-metal (first of all, gold) deposits of the Fennoscandian, Siberian, and Northeast Asian orogenic belts are considered. These deposits are of several types: Au (disseminated Au–sulfide and Au–quartz), Au–Bi, Au–Ag, Au–Sb, Ag–Sb, Au–Sb–Hg, and Ag–Hg. They formed in different geodynamic settings as a result of the active motion of crustal tectonic blocks of different nature. Subduction processes (both at the front and at the rear of continent-marginal and island-arc magmatic arcs) resulted in Au–Ag, Ag–Sb, Ag–Hg, Au–Sb–Hg, and Au–Bi deposits. Collision events gave rise to Au and Au–Bi deposits. Intraplate continental rifting and formation of orogenic belts along the boundaries of block (plate) sliding led to the origin of Au and Au–Bi ores in association with Au–Ag, Au–Sb–Hg, and complex ores. In all cases, the formation of noble-metal mineralization was accompanied by magmatism of different types and metamorphism. Because of this diversity of ores, there is no single concept of the genesis of noble-metal mineralization. Several competing models of genesis exist: hydrothermal-metamorphic, pluton-metamorphic, plutonic, activity of mantle fluid flows, and multistage concentration during the crust–mantle interaction with the leading role of sedimentary complexes.  相似文献   

4.
Two sequentially formed groups of dikes in the gabbro–porphyrite complex have been distinguished, the ages of which are early Eifelian (early dikes) and early Givetian (late dikes). We have estimated the temperature impact of ore contact metamorphism, which is related to dikes of the Lower Carboniferous Magnitogorsk intrusive complex. A hidden zonality of microimpurities in the ore-forming minerals has been established for the first time by the LA-ICP-MS method. The ore formation age has been determined as early Eifelian–early Givetian.  相似文献   

5.
Alkali-bearing Ti oxides were identified in mantle xenoliths enclosed in kimberlite-like rocks from Limeira 1 alkaline intrusion from the Alto Paranaíba Igneous Province, southeastern Brazil. The metasomatic mineral assemblages include mathiasite-loveringite and priderite associated with clinopyroxene, phlogopite, ilmenite and rutile. Mathiasite-loveringite (55–60 wt.% TiO2; 5.2–6.7 wt.% ZrO2) occurs in peridotite xenoliths rimming chromite (~50 wt.% Cr2O3) and subordinate ilmenite (12–13.4 wt.% MgO) in double reaction rim coronas. Priderite (Ba/(K+Ba)< 0.05) occurs in phlogopite-rich xenoliths as lamellae within Mg-ilmenite (8.4–9.8 wt.% MgO) or as intergrowths in rutile crystals that may be included in sagenitic phlogopite. Mathiasite-loveringite was formed by reaction of peridotite primary minerals with alkaline melts. The priderite was formed by reaction of peridotite minerals with ultrapotassic melts. Disequilibrium textures and chemical zoning of associated minerals suggest that the metasomatic reactions responsible for the formation of the alkali-bearing Ti oxides took place shortly prior the entrainment of the xenoliths in the host magma, and is not connected to old (Proterozoic) mantle enrichment events.  相似文献   

6.
Located adjacent to the Banded Gneissic Complex, Rampura–Agucha is the only sulfide ore deposit discovered to date within the Precambrian basement gneisses of Rajasthan. The massive Zn–(Pb) sulfide orebody occurs within graphite–biotite–sillimanite schist along with garnet–biotite–sillimanite gneiss, calc–silicate gneisses, amphibolites, and garnet-bearing leucosomes. Plagioclase–hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720–780°C, whereas temperatures obtained from Fe–Mg exchange between garnet and biotite (580–610°C) in the pelites correspond to postpeak resetting. Thermodynamic considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise PTt path with peak PT of ∼6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f(S 2)] range of 352°C (−8.2) to 490°C (−4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite, pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb–Ag-rich sulfosalt-bearing veins and pods that are irregularly distributed within the hanging wall calc–silicate gneisses show no evidence of deformation and metamorphism. The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn–jamesonite, Cu-free meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite and semseyite in the Pb–Ag-rich ores constrain temperatures at >550°C and <300°C, respectively. Features such as (1) low galena–sphalerite interfacial angles, (2) presence of multiphase sulfide–sulfosalt inclusions, (3) microcracks filled with galena (±pyrargyrite) without any hydrothermal alteration, and (4) high contents of Zn, Ag (and Sb) in galena, indicate partial melting in the PbS–Fe0.96S–ZnS–(1% Ag2S ± CuFeS2) system, which was critical for metamorphic remobilization of the Rampura–Agucha deposit.  相似文献   

7.
8.
《International Geology Review》2012,54(12):1506-1522
Garnet orthopyroxenites from Maowu (Dabieshan orogen, eastern China) were formed from a refractory harzburgite/dunite protolith. They preserve mineralogical and geochemical evidence of hydration/metasomatism and dehydration at the lower edge of a cold mantle wedge. Abundant polyphase inclusions in the cores of garnet porphyroblasts record the earliest metamorphism and metasomatism in garnet orthopyroxenites. They are mainly composed of pargasitic amphibole, gedrite, chlorite, talc, phlogopite, and Cl-apatite, with minor anhydrous minerals such as orthopyroxene, sapphirine, spinel, and rutile. Most of these phases have high XMg, NiO, and Ni/Mg values, implying that they probably inherited the chemistry of pre-existing olivine. Trace element analyses indicate that polyphase inclusions are enriched in large ion lithophile elements (LILE), light rare earth elements (LREE), and high field strength elements (HFSE), with spikes of Ba, Pb, U, and high U/Th. Based on the P–T conditions of formation for the polyphase inclusions (?1.4 GPa, 720–850°C), we suggest that the protolith likely underwent significant hydration/metasomatism by slab-derived fluid under shallow–wet–cold mantle wedge corner conditions beneath the forearc. When the hydrated rocks were subducted into a deep–cold mantle wedge zone and underwent high-pressure–ultrahigh-pressure (HP–UHP) metamorphism, amphibole, talc, and chlorite dehydrated and garnet, orthopyroxene, Ti-chondrodite, and Ti-clinohumite formed during prograde metamorphism. The majority of LILE (e.g. Ba, U, Pb, Sr, and Th) and LREE were released into the fluid formed by dehydration reactions, whereas HFSE (e.g. Ti, Nb, and Ta) remained in the cold mantle wedge lower margin. Such fluid resembling the trace element characteristics of arc magmas evidently migrates into the overlying, internal, hotter part of the mantle wedge, thus resulting in a high degree of partial melting and the formation of arc magmas.  相似文献   

9.
10.
Effluent from tailings impoundments of sulfide mine is an important environmental problem. The oxidation of sulfide minerals in tailings impoundments and consequent release of acid and contaminants, including heavy metals and arsenic, to tailings pore-water can last for decades to centuries. Pollution of water bodies including surface water and groundwater occurs when infiltration of precipitation is unhindered, bottom liners are absent and no drainage collection is installed. So there is a great need to develop reliable modeling techniques for characterizing geochemical interactions taking place within the tailings and predicting potential future environmental hazard which favor further prevention and remediation of the acidic mine drainage (AMD). In this paper, a comprehensive dynamic model for tailings-water interaction was established on the basis of considering the coupling and feedback among many factors and processes such as sulfide oxidation, gangue dissolution, oxygen diffusion, water flow and mass transport,  相似文献   

11.
1 The rise of the problem The region of western Shandong has been attracting more and more attention of geologists because of its unique geological features and abundant mineral resources, and it has been well geologically documented (Lin Jingqian et al.…  相似文献   

12.
Igneous and detrital zircons have six major U/Pb isotopic age peaks in common(2700 Ma,1875 Ma.1045 Ma,625 Ma,265 Ma and 90 Ma).For igneous rocks,each age peak is comprised of subpeaks with distinct geographic distributions and a subpeak age range per age peak ≤100 Myr.There are eight major LIP age peaks(found on≥10 crustal provinces)of which only four are in common to major detrital zircon age peaks(2715 Ma,1875 Ma,825 Ma,90 Ma).Of the whole-rock Re depletion ages,58% have correspo nding detrital zircon age peaks and 55% have corresponding LIP age peaks.Ten age pea ks are fou nd in common to igneous zircon,detrital zircon,LIP,and Re depletion age time series(3225 Ma,2875 Ma,2145 Ma,2085 Ma,1985 Ma,1785 Ma,1455 Ma,1175 Ma,825 Ma,and 90 Ma).and these are very robust peaks on a global scale as recorded in both crustal and mantle rocks.About 50% of the age peaks in each of these time series correspond to predicted peaks in a 94-Myr mantle cycle,including four of the ten peaks in common to all four time series(2875 Ma,1785 Ma,825 Ma and 90 Ma).Age peak widths and subpeak ranges per age peak suggest that mantle events responsible for age peaks are100 Myr and many50 Myr in duration.Age peak geographic distributions show three populations(≤1000 Ma,2500-1000 Ma,2500 Ma),with the number of new provinces in which age peaks are represented decreasing with time within each population.The breaks between the populations(at 2.5 Ga and 1 Ga)fall near the onsets of two transitions in Earth history.The First Transition may represent a change from stagnant-lid tectonics into plate tectonics and the Second Transition,the onset of subduction of continental crust.The major factor controlling geographic distribution of age peaks is the changing locations of orogeny.Before ~2 Ga,age subpeaks and peaks are housed in orogens within or around the edges of crustal provinces,mostly in accretionary orogens.but beginning at 1.9 Ga,collisional orogens become more important.The coincidence in duration between magmatic flare-ups in Phanerozoic arcs and duration of age subpeaks(10-30 Myr)is consiste nt with subpeaks representing periods of enhanced arcrelated magmatism.probably caused by increased subduction flux.The correlation of isotopic age peaks between time series supports a cause and effect relationship between mantle plume activity,continental magma production at convergent margins,and crustal deformation.Correlation of over half of the detrital zircon age peaks(and six of the nine major peaks)with Re depletion age peaks supports an interpretation of the zircon peaks as crustal growth rather than selective preservation peaks.  相似文献   

13.
Fe–Mg partitioning between post-perovskite and ferropericlase has been studied using a laser-heated diamond anvil cell at pressures up to 154 GPa and 2,010 K which corresponds to the conditions in the lowermost mantle. The composition of the phases in the recovered samples was determined using analytical transmission electron microscopy. Our results reveal that the Fe–Mg partition coefficient between post-perovskite and ferropericlase (K DPPv/Fp) increases with decreasing bulk iron content. The compositional dependence of K DPPv/Fp on the bulk iron content explains the inconsistency in previous studies, and the effect of the bulk iron content is the most dominant factor compared to other factors, such as temperature and aluminum content. Iron prefers ferropericlase compared to post-perovskite over a wide compositional range, whereas the iron content of post-perovskite (X FePPv, the mole fraction) does not exceed a value of 0.10. The iron-rich ferropericlase phase may have significant influence on the physical properties, such as the seismic velocity and electrical conductivity at the core–mantle boundary region.  相似文献   

14.
15.
A suite of young volcanic basaltic lavas erupted on the intra-plate island of Niuafo’ou and at active rifts and spreading centres (the King’s Triple Junction and the Northeastern Lau Spreading Centre) in the northern Lau Basin is used to examine the pattern of mantle flow and the dynamics of melting beneath this complex back-arc system. All lavas contain variable amounts of a subduction related component inherited from the Tonga subduction zone to the east. All lavas have higher 87Sr/86Sr, lower 143Nd/144Nd and more radiogenic Pb isotope compositions than basalts erupted at the Central Lau Spreading Centre in the central Lau Basin, and are interpreted as variable mixtures of subduction-modified, depleted upper mantle, and mantle residues derived from melting beneath the Samoan Islands which has leaked through a tear in the subducting Pacific Plate beneath the Vitiaz Lineament at the northern edge of the Lau Basin. Our data can be used to map out the present-day distribution of Samoan mantle in this region, and show that it influences the compositions of lavas erupted as far as 400 km from the Samoan Islands. The distribution of Samoan-influenced lavas implies south- and southwest-wards mantle flow rates of >4 cm/year. U-series disequilibria in historic Niuafo’ou lavas have average (230Th/238U) = 1.13, (231Pa/235U) = 2.17, (226Ra/230Th) = 2.11, and together with major and trace element data require ∼5% partial melting of mantle at between 2 and 3 GPa, with a residual porosity of 0.002 and an upwelling rate of 1 cm year−1. We suggest that intraplate magmatism in the northern Lau Basin results from decompression melting during southward flow of mantle from beneath old (110–120 Ma), relatively thick Pacific oceanic lithosphere to beneath young (<5 Ma), thinner oceanic lithosphere beneath the northern Lau Basin.  相似文献   

16.
17.
On the basis of their textures and mineral compositions spinel-peridotite xenoliths of the Cr-diopside group (group I) from Cenozoic volcanic fields of Arabia can be classified into different subtypes. Type IA is of lherzolitic to harzburgitic composition; mineral compositions are similar to those of group I mantle xenoliths from worldwide occurrences. Type IB xenoliths have lherzolitic to wehrlitic compositions; Mg/(Mg+Fe) ratios of the clinopyroxenes (0.862–0.916) and olivines (0.872–0.914) are similar too or slightly lower than those of typical IA minerals. Texturally, type IB xenoliths are distinguished from type IA rocks by the presence of intragranular spinel, intragranular relict Cr-pargasite, and subordinate intergranular Ba-phlogopite (11.1% BaO). The hydrous minerals in type IB xenoliths are interpreted to document an earlier metasomatism 1 which did not affect type IA lithospheric mantle. Subsequent recrystallization caused the partial replacement of Cr-pargasite in type IB materials and resulted in the formation of less hydrous mineral assemblages. Some of the type IA xenoliths are characterized by secondary intergranular amphibole which must have formed recently. The absence or presence of this intergranular amphibole is used to distinguish an anhydrous subtype IA1 from a hydrous subtype IA2. Type IB xenoliths may also contain secondary intergranular amphibole (similar to the one in subtype IA2) or they contain abundant formermelt patches now consisting of glass and phenocrysts of olivine, clinopyroxene, amphibole, and spinel. The secondary intergranular amphiboles and the former melt patches, both are interpreted as results of a second metasomatism (metasomatism 2). In their trace element and isotopic characteristics, type IA1 and type IA2 clinopyroxenes do not exhibit any systematic differences. Furthermore, type IA2 clinopyroxenes are in Sr isotopic disequilibrium with intergranular amphiboles. This suggests that type IA2 clinopyroxenes were not modified during the second metasomatism 2. All type IA clinopyroxenes have low Sr contents (100 ppm); most of them show Sm/Nd ratios higher than inferred for bulk earth. In their 87Sr/86Sr and 143Nd/144Nd ratios, type IA clinopyroxenes exhibit a large spread from 0.70226–0.70376 and from 0.51375–0.51251, respectively. Highly variable Sr/Nd ratios (5.0–79.3) and variable TUR and TCHUR model age relationships require different evolutions of the respective mantle portions. Nevertheless, all but two type IA clinopyroxenes form a linear array in a Sm–Nd isochron diagram which probably can not be explained by mixing. If taken as an isochron the slope of the array corresponds to an age of around 700 Ma. The mean initial Nd of 5.8±1.7 (1) is similar to values for juvenile Pan-African (i.e. 850–650 Ma old) crust of the Arabian-Nubian shield. It is suggested that type IA lithospheric mantle and the juvenile Pan-African crust are two counterparts fractionated from a common source during the earlier stages of the Pan-African. Type IB clinopyroxenes have high Sr contents (200 ppm), variable Sr/Nd ratios (9–111) and Sm/Nd ratios generally below that inferred for bulk earth, and show a small spread in their Sr and Nd isotopic compositions (0.70299–0.70318 and 0.51285–0.51278, respectively). In a Sm–Nd isochron diagram the data points form a linear, horizontal array indicating a close-to-zero age for the earlier metasomatism 1 and suggesting a close genetic relationship to mantle processes related to the formation of the Red Sea.  相似文献   

18.
The ages of subcontinental lithospheric mantle beneath the North China and South China cratons are less well-constrained than the overlying crust. We report Re–Os isotope systematics of mantle xenoliths entrained in Paleozoic kimberlites and Mesozoic basalts from eastern China. Peridotite xenoliths from the Fuxian and Mengyin Paleozoic diamondiferous kimberlites in the North China Craton give Archean Re depletion ages of 2.6–3.2 Ga and melt depletion ages of 2.9–3.4 Ga. No obvious differences in Re and Os abundances, Os isotopic ratios and model ages are observed between spinel-facies and garnet-facies peridotites from both kimberlite localities. The Re–Os isotopic data, together with the PGE concentrations, demonstrate that beneath the Archean continental crust of the eastern North China Craton, Archean lithospheric mantle of spinel- to diamond-facies existed without apparent compositional stratification during the Paleozoic. The Mesozoic and Cenozoic basalt-borne peridotite and pyroxenite xenoliths, on the other hand, show geochemical features indicating metasomatic enrichment, along with a large range of the Re–Os isotopic model ages from Proterozoic to Phanerozoic. These features indicate that lithospheric transformation or refertilization through melt-peridotite interaction could be the primary mechanism for compositional changes during the Phanerozoic, rather than delamination or thermal-mechanical erosion, despite the potential of these latter processes to play an important role for the loss of garnet-facies mantle. A fresh garnet lherzolite xenolith from the Yangtze Block has a Re depletion age of ∼1.04 Ga, much younger than overlying Archean crustal rocks but the same Re depletion ages as spinel lherzolite xenoliths from adjacent Mesozoic basalts, indicating Neoproterozoic resetting of the Re–Os system in the South China Craton.  相似文献   

19.
Do mantle plumes exist?   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号