首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   10篇
  国内免费   5篇
测绘学   2篇
大气科学   26篇
地球物理   64篇
地质学   66篇
海洋学   59篇
天文学   54篇
综合类   3篇
自然地理   10篇
  2024年   1篇
  2023年   1篇
  2021年   5篇
  2020年   8篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   12篇
  2015年   12篇
  2014年   15篇
  2013年   7篇
  2012年   12篇
  2011年   10篇
  2010年   9篇
  2009年   17篇
  2008年   19篇
  2007年   10篇
  2006年   14篇
  2005年   9篇
  2004年   13篇
  2003年   9篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   6篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   8篇
  1980年   2篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有284条查询结果,搜索用时 31 毫秒
31.
The large microwave burst of 1981 April 1, which was accompanied by both hard X-ray and γ-ray emissions, was analyzed to study the acceleration of particles in the impulsive phase. The analysis suggests the following results. (1) Electrons were accelerated up to energies of several hundred keV in a low loop. On the other hand, electrons were accelerated to relativistic energy without injection of pre-accelerated electrons near the top of a large loop where energetic ions were also probably accelerated. (2) The mechanism for accelerating electrons to relativistic energy and also ions was different from that for accelerating electrons up to energies of several hundred KeV and was closely related with upward motion of a flare loop.  相似文献   
32.
Location and parameters of a microwave millisecond spike event   总被引:1,自引:0,他引:1  
A typical microwave millisecond spike event on November 2, 1997 was observed by the radio spectrograph of National Astronomical Observatories (NAOs) at 2.6–3.8 GHz with high time and frequency resolution. This event was also recorded by Nobeyama Radio Polarimeters (NoRP) at 1–35 GHz and Radio Heliograph (NoRH) at 17 GHz. The source at 17 GHz is located in one foot-point of a small bright coronal loop of YOHKOH SXT and SOHO EIT images with strong photospheric magnetic field in SOHO MDI magnetograph. It is assumed that the electron cyclotron maser instability and gyro-resonance absorption dominate, respectively, the rising and decay phase of the spike event. For different harmonic number of gyro-frequency or magnetic field strength, a fitting program with free plasma parameters is used to minimize the difference between the observational and theoretical values of the exponential growth and decay rates for a given spike. The plasma parameters at third harmonic number are more comparable to their typical values in solar corona. Hence, it is able to provide a diagnosis for the source parameters (magnetic field, density, and temperature), the properties of radiations (wave vector and propagation angle), and the properties of non-thermal electrons (density, pitch angle, and energy). The results are also comparable with the diagnosis of the gyro-synchrotron radiation model, the frequency drift rates and a dipole magnetic field model, as well as the YOHKOH SXT and SOHO MDI data. This study is supported by the NFSC project nos. 10333030 and 10273025, and “973” program with no. G2000078403.  相似文献   
33.
Radiative Heat Transfer and Hydrostatic Stability in Nocturnal Fog   总被引:1,自引:0,他引:1  
We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM2), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-m droplet diameter and liquid water content of 0.1 × 10–3 kg m–3;, the temperature profile within the fog becomes S shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-m diameter droplet, no strong convective instability layer forms, whereas for a 10-m diameter droplet a strong convective instability is observed.  相似文献   
34.
In this study, we constructed a perturbed physics ensemble (PPE) for the MIROC5 coupled atmosphere–ocean general circulation model (CGCM) to investigate the parametric uncertainty of climate sensitivity (CS). Previous studies of PPEs have mainly used the atmosphere-slab ocean models. A few PPE studies using a CGCM applied flux corrections, because perturbations in parameters can lead to large radiation imbalances at the top of the atmosphere and climate drifts. We developed a method to prevent climate drifts in PPE experiments using the MIROC5 CGCM without flux corrections. We simultaneously swept 10 parameters in atmosphere and surface schemes. The range of CS (estimated from our 35 ensemble members) was not wide (2.2–3.2?°C). The shortwave cloud feedback related to changes in middle-level cloud albedo dominated the variations in the total feedback. We found three performance metrics for the present climate simulations of middle-level cloud albedo, precipitation, and ENSO amplitude that systematically relate to the variations in shortwave cloud feedback in this PPE.  相似文献   
35.
The biological and physical controls on microbial processes that produce and consume N2O in soils are highly complex. Isotopomer ratios of N2O, with abundance of 14N15N16O, 15N14N16O, and 14N14N18O relative to 14N14N16O, are promising for elucidation of N2O biogeochemistry in an intact ecosystem. Site preference, the nitrogen isotope ratio of the central nitrogen atom minus that of the terminal nitrogen atom, is useful to distinguish between N2O via hydroxylamine oxidation and N2O via nitrite reduction.We applied this isotopomer analysis to a groundwater system in a temperate coniferous-forested ecosystem. Results of a previous study at this location showed that the N2O concentration in groundwater varied greatly according to groundwater chemistry, i.e. NO3, DOC, and DO, although apportionment of N2O production to nitrification or denitrification was ambiguous. Our isotopic analysis (δ15N and δ18O) of NO3 and N2O implies that denitrification is the dominant production process of N2O, but definitive information is not derived from δ15N and δ18O analysis because of large variations in isotopic fractionations during production and consumption of N2O. However, the N2O site preference and the difference in δ15N between NO3 and N2O indicate that nitrification contributes to total N2O production and that most measured N2O has been subjected to further N2O reduction to N2. The implications of N2O biogeochemistry derived from isotope and isotopomer data differ entirely from those derived from conventional concentration data of DO, NO3, and N2O. That difference underscores the need to reconsider our understanding of the N cycle in the oxic-anoxic interface.  相似文献   
36.
Japanese Venus Climate Orbiter, Akatsuki, is cruising to approach to Venus again although its first Venus orbital insertion (VOI) has been failed. At present, we focus on the next opportunity of VOI and the following scientific observations.We have constructed an automated cloud tracking system for processing data obtained by Akatsuki in the present study. In this system, correction of the pointing of the satellite is essentially important for improving accuracy of the cloud motion vectors derived using the cloud tracking. Attitude errors of the satellite are reduced by fitting an ellipse to limb of an imaged Venus disk. Next, longitude–latitude distributions of brightness (cloud patterns) are calculated to make it easy to derive the cloud motion vectors. The grid points are distributed at regular intervals in the longitude–latitude coordinate. After applying the solar zenith correction and a highpass filter to the derived longitude–latitude distributions of brightness, the cloud features are tracked using pairs of images. As a result, we obtain cloud motion vectors on longitude–latitude grid points equally spaced. These entire processes are pipelined and automated, and are applied to all data obtained by combinations of cameras and filters onboard Akatsuki. It is shown by several tests that the cloud motion vectors are determined with a sufficient accuracy. We expect that longitude–latitude data sets created by the automated cloud tracking system will contribute to the Venus meteorology.  相似文献   
37.
Field, hand specimen, and microscopic investigations alongside X-ray diffraction analyses revealed four types of hydrothermal alteration (Type-A, -B, -C, and -D) based on the mode of occurrence of altered rocks and alteration mineral assemblage at Hakusui-kyo and Horai-kyo along the Arima-Takatsuki Tectonic Line (ATTL) in western Japan. Type-A alteration locally occurred as gray alteration halos with sulfide minerals. Type-B and -C alterations were confined to fault gouge veins and occurred as greenish-gray veins and brown veins, respectively. Type-C alteration crosscut Type-B alteration. These alterations were associated with a number of granitic fragments including cohesive breccia and micrographic facies. Type-D alteration occurred locally in brown sediments. Different mineralogical features in the four alterations are summarized as (Type-A) illite; (Type-B) chlorite; (Type-C) limonite (Fe3+ hydroxides and goethite) and calcite; and (Type-D) limonite. We propose that the alterations can be broadly divided into Paleocene hydrothermal alteration (Type-A) and post-Late Miocene hydrothermal alteration (Type-B, -C, and -D): Type-A alteration occurred at approximately 200 °C during hydrothermal activity after a granitic intrusion in Late Cretaceous; Type-B, -C and -D alterations occurred under hydrothermal activity accompanying deep fluids with repeated ascents invoked by the seismicity of the ATTL after the Late Miocene. The fluids may have been the “Arima-type thermal waters” (i.e., mixtures of convective groundwater and Na-Ca-Cl-HCO3-type fluids). Type-B alteration occurred in fractures at depths where the temperature was ≥150 °C. Type-C alteration overprinted Type-B alteration as a result of mixing of new deep fluids and descending oxidized meteoric water near the surface. Fe3+ hydroxides and calcite precipitated from the fluids due to the oxidation of Fe2+ and the degassing of CO2, respectively, at ambient to near-boiling temperatures. When the ascending fluids gushed out from the fractures, they generated Type-D alteration at the surface under similar temperature conditions due to the oxidation of Fe2+.  相似文献   
38.
Chemical compositions of materials used for new sample holders (vertically aligned carbon nanotubes [VACNTs] and polyimide film), which were developed for the analysis of Hayabusa2‐return samples, were determined by instrumental neutron activation analysis and/or instrumental photon activation analysis, to estimate contamination effects from the sample holders. The synthetic quartz plate used for the sample holders was also analyzed. Ten elements (Na, Al, Cr, Mn, Fe, Ni, Eu, W, Au, and Th) and 14 elements (Na, Al, K, Sc, Ti, Cr, Zn, Ga, Br, Sb, La, Eu, Ir, and Au) could be detected in the VACNTs and polyimide film, respectively. The VACNT data show that contamination by this material with respect to the Murchison meteorite is negligible in terms of the elemental ratios (e.g., Fe/Mn, Na/Al, and Mn/Cr) used for the classification of meteorites due to the extremely low density of VACNTs. However, for the Au/Cr ratio, even small degrees (1.7 wt%) of contamination by VACNTs will change the Au/Cr ratio. Elemental ratios used for the classification of meteorites are only influenced by large amounts of contamination (>60 wt%) of polyimide film, which is unlikely to occur. In contrast, detectable effects on Ti isotopic compositions are caused by >0.1 and >0.3 wt% contamination by VACNTs and polyimide film, respectively, and Hf isotopic changes are caused by >0.1 wt% contamination by VACNTs. The new sample holders (VACNTs and polyimide film) are suitable for chemical classification of Hayabusa2‐return samples, because of their ease of use, applicability to multiple analytical instruments, and low contamination levels for most elements.  相似文献   
39.
40.

The temperature distribution at depth is a key variable when assessing the potential of a supercritical geothermal resource as well as a conventional geothermal resource. Data-driven estimation by a machine-learning approach is a promising way to estimate temperature distributions at depth in geothermal fields. In this study, we developed two methodologies—one based on Bayesian estimation and the other on neural networks—to estimate temperature distributions in geothermal fields. These methodologies can be used to supplement existing temperature logs, by estimating temperature distributions in unexplored regions of the subsurface, based on electrical resistivity data, observed geological/mineralogical boundaries, and microseismic observations. We evaluated the accuracy and characteristics of these methodologies using a numerical model of the Kakkonda geothermal field, Japan, where a temperature above 500 °C was observed below a depth of about 3.7 km. When using geological and geophysical knowledge as prior information for the machine learning methods, the results demonstrate that the approaches can provide subsurface temperature estimates that are consistent with the temperature distribution given by the numerical model. Using a numerical model as a benchmark helps to understand the characteristics of the machine learning approaches and may help to identify ways of improving these methods.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号