首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   5篇
  国内免费   1篇
测绘学   2篇
大气科学   9篇
地球物理   12篇
地质学   25篇
海洋学   10篇
天文学   22篇
自然地理   4篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   8篇
  2011年   5篇
  2010年   2篇
  2009年   7篇
  2008年   1篇
  2007年   3篇
  2006年   8篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1989年   1篇
  1984年   2篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
71.
CNES (Centre National d’Etudes Spatiales) and CLS (Collecte Localisation Satellites) became an International GNSS Service (IGS) Analysis Center (AC) the 20th of May 2010. Since 2009, we are using the integer ambiguity fixing at the zero-difference level strategy in our software package (GINS/Dynamo) as an alternative to classical differential approaches. This method played a key role among all the improvements in the GPS processing we made during this period. This paper provides to the users the theoretical background, the strategies and the models used to compute the products (GPS orbits and clocks, weekly station coordinate estimates and Earth orientation parameters) that are submitted weekly to the IGS. The practical realization of the two-step, ambiguity-fixing scheme (wide-lane and narrow-lane) is described in detail. The ambiguity fixing improved our orbit overlaps from 6 to 3?cm WRMS in the tangential and normal directions. Since 2008, our products have been also regularly compared to the IGS final solutions by the IGS Analysis Center Coordinator. The joint effects of ambiguity fixing and dynamical model changes (satellite solar radiation pressure and albedo force) improved the consistency with IGS orbits from 35 to 18?mm 3D-WRMS. Our innovative strategy also gives additional powerful properties to the GPS satellite phase clock solutions. Single receiver (zero-difference) ambiguity resolution becomes possible. An overview of the applications is given.  相似文献   
72.
Martian regolith breccia NWA 7533 (and the seven paired samples) is unique among Martian meteorites in showing accessory pyrite (up to 1% by weight). Pyrite is a late mineral, crystallized after the final assembly of the breccia. It is present in all of the lithologies, i.e., the fine‐grained matrix (ICM), clast‐laden impact melt rocks (CLIMR), melt spherules, microbasalts, lithic clasts, and mineral clasts, all lacking magmatic sulfides due to degassing. Pyrite crystals show combinations of cubes, truncated cubes, and octahedra. Polycrystalline clusters can reach 200 μm in maximum dimensions. Regardless of their shape, pyrite crystals display evidence of very weak shock metamorphism such as planar features, fracture networks, and disruption into subgrains. The late fracture systems acted as preferential pathways for partial replacement of pyrite by iron oxyhydroxides interpreted as resulting from hot desert terrestrial alteration. The distribution and shape of pyrite crystals argue for growth at moderate to low growth rate from just‐saturated near neutral (6 < pH<10), H2S‐HS‐rich fluids at minimum log fO2 of >FMQ + 2 log units. It is inferred from the maximum Ni contents (4.5 wt%) that pyrite started crystallizing at 400–500 °C, during or shortly after a short‐duration, relatively low temperature, thermal event that lithified and sintered the regolith breccias, 1.4 Ga ago as deduced from disturbance in several isotope systematics.  相似文献   
73.
Transmission electron microscopy was used for characterizing the defect microstructure induced by shock experiments in a single crystal of diopside. The shock-induced defects found in the crystal can be divided in four distinct types:
  1. A high density and pervasive distribution of dislocations in glide configuration (glide systems (100)[0
  2. Mechanical twin lamellae, mostly parallel to (100), the (001) twin lamellae are less abundant. li]3)
  3. Heterogeneously distributed tiny molten zones (3 to 20 μm size) which, after cooling, appear as a glass with a chemical composition very close to the one of the original diopside.
The present TEM study reveals that the defect micro-structure in shocked diopside consists of a large variety of shock-induced defects. Especially, the amorphous PDFs which were never observed in statically deformed diopside seem to be an important characteristic micro-structural defects in shocked silicate minerals. Although the presence of amorphous PDFs is not yet confirmed for naturally shocked clinopyroxene, we strongly suggest that these features can serve as a diagnostic tool for recognizing impact phenomena on all planetary bodies of our solar system.  相似文献   
74.
Abstract— Synthetic MgSiO3 glasses were irradiated at room temperature by 300 keV electrons in a transmission electron microscope (TEM). One of the samples had been previously irradiated by 50 keV He+ ions. Electron irradiation induces the nucleation and growth of randomly oriented nanometer‐sized crystallites. The crystallites first consist of MgO and subsequently of forsterite (Mg2SiO4). Both are seen to form within an amorphous SiO2 matrix. The rate of crystallization of the samples has been monitored by conventional TEM imaging and electron diffraction. The sample that had been pre‐irradiated with He+ ions is found to transform faster than the as‐quenched glass. The crystallization of metastable MgSiO3 glasses is explained by ionizing radiation‐induced elemental diffusion that allows the reorganization of matter into a more favourable thermodynamic state. These results show that ionizing radiation interactions could account for crystal formation as observed in infrared spectroscopy in some young stellar environments.  相似文献   
75.
76.
Coastal areas as reservoirs of resources for hominid groups have been widely studied in recent years. These areas combine marine with terrestrial and wetland resources and would have been optimum sites for hominids, including Neanderthals. This is the case with the Cova del Gegant, a cave that today opens directly onto the Mediterranean Sea and is located in the north‐eastern Iberian Peninsula. The geomorphological evolution of the Massis del Garraf has provided evidence that during the late Pleistocene there was a littoral platform between 8 and 13 km wide in front of the Cova del Gegant. Within this framework, the data derived from analysis of the small vertebrates and large mammals recovered from Cova del Gegant, including taxa currently absent from the Massis del Garraf, suggest that the landscape surrounding the cave provided a richer terrestrial ecosystem for Neanderthals than is available in this zone today. Analysis of the small‐vertebrate association from the cave reveals that the landscape surrounding the cave was dominated by woodland‐edge and open environments and that the climate was Mediterranean. The results have been compared with the only Iberian site with similar characteristics to the Cova del Gegant, Gorham's cave (southern Iberia, Gibraltar), revealing differences and similarities in the landscape and climate on the basis of the small‐mammal assemblages as well as the differences in the accessibility to terrestrial mammalian resources for the Neanderthal groups. The landscape and the climate were reasonably similar at the two sites, but the differences in the accessibility of resources for the Neanderthals are directly related to the location of the sites and the coastal position. Whereas the Cova del Gegant was on a route of mammal migration (between the Ebro Valley and France) suited for securing terrestrial resources, Gorham's cave is located on a small peninsula with a lower abundance of terrestrial mammal resources. This is probably why the Neanderthal groups at Gorham's cave exploited marine resources, whereas there is no evidence of marine resources having been exploited at Cova del Gegant, even though the seashore was nearby. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
77.
78.
Marine phanerogams are ecosystem engineers, as their presence induces major environmental changes that impact on the benthic fauna. Consequently, modifications to the structure of benthic communities would be expected to be associated with seagrass decline. Since 2005, Zostera noltii seagrass beds in Arcachon Bay (France), the largest in Europe, have undergone a severe decline. Twelve stations distributed throughout the lagoon were sampled in 2002, and all were found to be densely planted at that time. Subsequently, the same stations were revisited in 2010 and seagrass cover had drastically decreased by that time. Based on benthic macrofauna, multidimensional scaling (MDS) analysis identified four groups. Years were separated. In 2002, two groups were distinct in relation to the water body, since in 2010 separation between the two other groups was related to seagrass occurrence. When looking at community structure and dominant species there were moderate differences within and between years, independent of seagrass decline. Seagrass loss did not drastically modify the species composition as they were preserved in the remaining seagrass patches. However, there was a drop in macrofauna abundance in unvegetated muddy compared with abundance in the remaining seagrass areas. Epifauna was particularly affected by seagrass decline. Among biotic indicators based on macrofauna, multivariate indicator MISS (Macrobenthic Index in Sheltered Systems) was in agreement with the similarity of macrofauna structure among groups, while other tested indicators performed badly in relation to seagrass occurrence. However, no index detected seagrass loss, highlighting the necessity of maintaining a separate survey on seagrass cover.  相似文献   
79.
Abstract— This paper reports one of the first attempts to investigate by analytical transmission electron microscopy (ATEM) the microstructures and compositions of Fe‐Ni metal grains in ordinary chondrites. Three ordinary chondrites, Saint Séverin (LL6), Agen (H5), and Tsarev (L6) were selected because they display contrasting microstructures, which reflects different thermal histories. In Saint Séverin, the microstructure of the Ni‐rich metal grains is due to slow cooling. It consists of a two‐phase assemblage with a honeycomb structure resulting from spinodal decomposition similar to the cloudy zone of iron meteorites. Microanalyses show that the Ni‐rich phase is tetrataenite (Ni = 47 wt%) and the Ni‐poor phase, with a composition of ~25% Ni, is either martensite or taenite, these two occurring adjacent to each other. The observation that the Ni‐poor phase is partly fcc resolves the disagreement between previous transmission electron microscopy (TEM) and Mössbauer studies on iron meteorites and ordinary chondrite metal. The Ni content of the honeycomb phase is much higher than in mesosiderites, confirming that mesosiderites cooled much more slowly. The high‐Ni tetrataenite rim in contact with the cloudy zone displays high‐Ni compositional variability on a very fine scale, which suggests that the corresponding area was destabilized and partially decomposed at low temperature. Both Agen and Tsarev display evidence of reheating and subsequent fast cooling obviously related to shock events. Their metallic particles mostly consist of martensite, the microstructure of which depends on local Ni content. Microstructures are controlled by both the temperature at which martensite forms and that at which it possibly decomposes. In high‐Ni zones (>15 wt%), martensitic transformation started at low temperature (<300 °C). Because no further recovery occurred, these zones contain a high density of lattice defects. In low‐Ni zones (<15 wt%), martensite grains formed at higher temperature and their lattice defects recovered. These martensite grains present a lath texture with numerous tiny precipitates of Ni‐rich taenite (Ni = 50 wt%) at lath boundaries. Nickel composition profiles across precipitate‐matrix interfaces show that the growth of these precipitates was controlled by preferential diffusion of Ni along lattice defects. The cooling rates deduced from Ni concentration profiles and precipitate sizes are within the range 1–10 °C/year for Tsarev and 10–100 °C/year for Agen.  相似文献   
80.
Clay-drape couplets on subaqueous dunes have been regarded as a diagnostic feature of the subtidal environment since Visser's seminal paper (1980). The new observation of clay-drape couplets in the intertidal zone on a present day tidal bar of the Gironde estuary shows that they are not restricted to the subtidal zone.
In the intertidal zone, low-tide slack-water clay drapes are deposited in the bottomsets of the dominant current dunes when the muddy water retained in the troughs is absorbed into the sand during the emergence of the intertidal bar. They drape emergence run-off ripples generated by the drainage currents in the bottomsets. High-tide slack-water clay drapes are deposited over the entire dune surface and are preserved on the lee side of the dunes and in the bottomsets. They drape the subordinate current ripples. Low-tide and high-tide slack-water clay drapes enclose one thin rippled sand layer (the subordinate current bundle) and are isolated from other adjacent clay-drape couplets by the dominant current bundle.
The clay-drape couplets deposited in the intertidal zone can be distinguished from their subtidal counterparts on the basis of two morphological differences:
1. In the intertidal zone, the low-tide clay drape is only present in the bottomsets of the dunes, whereas in the subtidal zone equivalent clay drapes are also present on the lower part of the lee side of the dunes.
2. In the intertidal zone, low-tide clay drapes are deposited in the bottomsets of the dunes over emergence run-off ripples oriented in the direction of the drainage currents (i.e. in a direction normal to the tidal currents). Conversely, in the subtidal zone, the equivalent clay drapes are typically deposited over ripples oriented in the tidal-current direction (ebb or flood). There is a difference of polarity of 90° between the intertidal and subtidal small-scale bedforms draped by the low-tide slack-water drapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号