首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   15篇
  国内免费   7篇
测绘学   5篇
大气科学   19篇
地球物理   43篇
地质学   140篇
海洋学   12篇
天文学   19篇
综合类   2篇
自然地理   9篇
  2023年   4篇
  2022年   7篇
  2021年   5篇
  2020年   6篇
  2019年   6篇
  2018年   22篇
  2017年   15篇
  2016年   15篇
  2015年   11篇
  2014年   13篇
  2013年   19篇
  2012年   15篇
  2011年   13篇
  2010年   12篇
  2009年   15篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1969年   1篇
  1965年   2篇
排序方式: 共有249条查询结果,搜索用时 397 毫秒
41.
International Journal of Earth Sciences - Quantitative vorticity analyses in orogenic belts are essential for studying the kinematics of deformation and can be performed using a range of methods....  相似文献   
42.
The integration of Remote Sensing (RS) and Geographic Information Systems (GIS) constitutes a powerful tool for the evaluation of watershed morphometric parameters. The benefits of this integration include saving time and effort as well as improving the accuracy of the analysis. Moreover, this technique is appropriate for describing the watershed and its streams. In this study, a detailed morphometric analysis of the Wadi Baish catchment area has been performed using the Shuttle Radar Topography Mission (SRTM). The performed morphometric analysis includes linear, areal, and relief aspects. The results of the morphometric analysis reveal that the catchment can be described as of eighth stream order and consists of an area of 4741.07 km2. Additionally, the basin is characterized by a relatively high mean value of bifurcation (4.012), indicative of the scarcity of permeable rocks with high slope in the area. This value of bifurcation ratio is consistent with the high drainage density value of 2.064 km/km2 and confirms the impermeability of the subsurface material and mountainous relief. The hypsometric integral of the catchment is 47.4%, and the erosion integral of the catchment is 52.6%, both were indications of a mature catchment area.  相似文献   
43.
The Sinai Peninsula has attracted the attention of many geological and geophysical studies as it is influenced and bounded by major tectonic events. Those are (1) the Mesozoic to Early Cenozoic tectonically active opening of the Tethys, (2) the Late Cretaceous to Early Tertiary (Laramide) Syrian arc system, due to closing of the Tethys (3) the Oligo-Miocene Gulf of Suez rifted basin, and (4) the Late Miocene to Recent transform Dead Sea–Gulf of Aqaba rift. Additionally, the shear zones inside Sinai such as the Ragabet El-Naam and Minsherah-Abu Kandu Shear Zones. Each of these major tectonic events has affected dramatically the structure evolution of the northern Sinai area. The present paper estimates the 3D density contrast model using the gravity data of northern Sinai. The estimated 3D density contrast model elucidated the peculiarities of the main structural elements in the region. The estimated 3D density contrast model showed the high and low gravity anomalies that form the main mountains and main valleys in northern Sinai. The estimated low density zones are in agreement with the inferred faults resulting from the first horizontal derivative. Comparing the 3D model with the tectonic history of the region and the results of the first horizontal derivative and least square separation increased the reliability of the model.  相似文献   
44.
45.
Erosion of sandy beaches is a worldwide problem that elicits innovative geoengineer‐ing techniques to reduce adverse impacts of shoreline retreat. Beach replenishment has emerged as the “soft”; shore‐stabilization technique of choice for mitigating beach erosion. This method of shore protection involves the addition of sand to the littoral sediment budget for sacrificial purposes. Because inland sand sources are often uneconomical or impractical to use, and known nearshore sources are limited, finding adequate quantities of suitable sand on the inner continental shelf is often vital to beach replenishment projects. The technical studies of survey and materials analysis that identify and delineate usable sand sources are sometimes almost as expensive as small‐project dredging, pumping, and placing the sand on the beach as fill. Inadequate quantity or substandard quality of shelf sand, as well as often‐prohibitive overhead expenses, thus compel shoreline managers to seek suitable sand sources offshore.

In the study area off the central‐west coast of Florida, offshore potential borrow areas (PBAs) were identified on the basis of studies conducted in reconnoitory and detailed phases. Sophisticated state‐of‐the‐art equipment used in this investigation provided more detailed subbottom mapping information than is normally obtained with conventional seismic equipment. An example of sand exploration studies was incorporated in a 215‐km2 survey of offshore areas by conducting bathymetric surveys and subbottom seismic profiling, collecting jet probes, grab samples, and vibrocores, and analyzing sediment grading in subsamples from vibrocores. These combined analyses indicated that at least 8.8 ×106 m3 of sand is available in potential borrow areas from 7.0 to 12 km offshore in water depths of 8.0 to 11.5 m. In the PBAs, mean grain size of sand falls into the range 0.13–0.53 mm, sorting averages 0.65–1.31ø, and the overall silt content varies from 3.9–8.5%. High silt contents (13–19%) mapped in some areas make these sedimentary deposits unsuitable as fill for artificial beach renourishment.  相似文献   
46.
Soputan is a high-alumina basalt stratovolcano located in the active North Sulawesi-Sangihe Islands magmatic arc. Although immediately adjacent to the still geothermally active Quaternary Tondono Caldera, Soputan’s magmas are geochemically distinct from those of the caldera and from other magmas in the arc. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions with high-altitude ash plumes and pyroclastic flows—eight explosive eruptions during the period 2003–2011. Our field observations, remote sensing, gas emission, seismic, and petrologic analyses indicate that Soputan is an open-vent-type volcano that taps basalt magma derived from the arc-mantle wedge, accumulated and fractionated in a deep-crustal reservoir and transported slowly or staged at shallow levels prior to eruption. A combination of high phenocryst content, extensive microlite crystallization and separation of a gas phase at shallow levels results in a highly viscous basalt magma and explosive eruptive style. The open-vent structure and frequent eruptions indicate that Soputan will likely erupt again in the next decade, perhaps repeatedly. Explosive eruptions in the Volcano Explosivity Index (VEI) 2–3 range and lava dome growth are most probable, with a small chance of larger VEI 4 eruptions. A rapid ramp up in seismicity preceding the recent eruptions suggests that future eruptions may have no more than a few days of seismic warning. Risk to population in the region is currently greatest for villages located on the southern and western flanks of the volcano where flow deposits are directed by topography. In addition, Soputan’s explosive eruptions produce high-altitude ash clouds that pose a risk to air traffic in the region.  相似文献   
47.
This study applied the time series analysis approach to model and predict univariate dissolved oxygen and temperature time series for four water quality assessment stations at Stillaguamish River located in the state of Washington. The order series method was applied to fulfill the normality assumption for modeling the univariate time series. Then, the AR(I)MA models were applied to study the stationary and nonstationary time series, the Auto-Regressive Fractionally Integrated Moving Average model was applied to study the time series with long memory. The results showed there existed three different structures for the univariate water quality time series at Stillaguamish River watershed. The identified time series model for each univariate water quality time series was found to be capable of predicting future values with reasonable accuracy. Overall, the time series modeling approach may be an efficient tool in assessment of the water quality in the river system.  相似文献   
48.
49.
Accelerograms recorded near active faults have some important characteristics that make them different from those recorded in far-fault regions. High-frequency components in acceleration records and long-period velocity pulses are among notable specifications of such ground motions. In this paper, a moving average filtering with appropriate cut-off frequency has been used to decompose the near-fault ground motions into two components having different frequency contents: first, Pulse-Type Record (PTR) that possesses long-period pulses; second, the relatively high-frequency BackGround Record (BGR), which does not include large velocity pulses. Comparing the results with those extracted through wavelet analysis shows that moving average filter is an appropriate and efficient tool for near-fault records decomposition. The method is applied to decompose a suite of 91 selected near-fault records and the elastic response of structures is examined through their response to the decomposed parts. The results emphasizes that in contrast with ordinary far-fault earthquake records, response spectra of near-fault ground motions typically have two distinct local peaks, which are representatives of the high- and low-frequency components, i.e., BGR and PTR, respectively. Moreover, a threshold period is identified below which the response of structures is dominated by BGR while PTR controls the response of structures with periods longer than this period.  相似文献   
50.
Micromorphology has important application in earth surface process and landform studies particularly in alluvial settings such as the Indo‐Gangetic Plains (IGP) with different geomorphic surfaces to identify climatic changes and neotectonic events and their influence on pedogenesis. The soils of the IGP extending from arid upland in the west to per humid deltaic plains in the east developed on five geomorphic surfaces namely QIG1 to QIG5 originating during the last 13.5 ka. Four soil‐geomorphic systems across the entire IGP are identified as: (i) the western Yamuna Plains/Uplands, (ii) the Yamuna‐Ganga Interfluve, (iii) the Ganga‐Ghaghara Interfluve, and (iv) the Deltaic Plains. Thin section analysis of the soils across the four soil‐geomorphic systems provides a record of provenance, mineral weathering, pedogenic processes and polygenesis in IGP. The soils over major parts of the IGP dominantly contain muscovite and quartz and small fraction of highly altered feldspar derived from the Himalayas. However, soils in the western and eastern parts of the IGP contain large volumes of fresh to weakly altered plagioclase and smectitic clay derived from the Indian craton. The soils in western Yamuna Plains/Uplands dominated by QIG2–QIG3 geomorphic surfaces and pedogenic carbonate developed in semi‐arid climate prior to 5 ka. However, soils of the central part of the IGP in the Yamuna‐Ganga Interfluve and Ganga‐Ghaghara Interfluve regions with dominance of QIG4–QIG5 surfaces are polygenetic due to climate change over the last 13.5 ka. The clay pedofeatures formed during earlier wet phase (13.5–11 ka) show degradation, loss of preferred orientation, speckled appearance in contrast with the later phase of wet climate (6.5–4 ka). The soils over the deltaic plains with dominance of vertic features along with clay pedofeatures suggest that illuviation of fine clay is an important pedogenic process even in soils with shrink‐swell characteristics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号