首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   10篇
大气科学   22篇
地球物理   29篇
地质学   80篇
海洋学   5篇
天文学   8篇
自然地理   28篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   9篇
  2016年   8篇
  2015年   5篇
  2014年   12篇
  2013年   8篇
  2012年   8篇
  2011年   12篇
  2010年   12篇
  2009年   9篇
  2008年   8篇
  2007年   9篇
  2006年   6篇
  2005年   9篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有172条查询结果,搜索用时 828 毫秒
41.
The Sarikavak Tephra from the central Galatean Volcanic Province (Turkey) represents the deposit of a complex multiple phase plinian eruption of Miocene age. The eruptive sequence is subdivided into the Lower-, Middle-, and Upper Sarikavak Tephra (LSKT, MSKT, USKT) which differ in type of deposits, lithology and eruptive mechanisms.The Lower Sarikavak Tephra is characterised by pumice fall deposits with minor interbedded fine-grained ash beds in the lower LSKT-A. Deposits are well stratified and enriched in lithic fragments up to >50 wt% in some layers. The upper LSKT-B is mainly reversely graded pumice fall with minor amounts of lithics. It represents the main plinian phase of the eruption. The LSKT-A and B units are separated from each other by a fine-grained ash fall deposit. The Middle Sarikavak Tephra is predominantly composed of cross-bedded ash-and-pumice surge deposits with minor pumice fall deposits in the lower MSKT-A and major pyroclastic flow deposits in the upper MSKT-B unit. The Upper Sarikavak Tephra shows subaerial laminated surge deposits in USKT-A and subaqueous tephra beds in USKT-B.Isopach maps of the LSKT pumice fall deposits as well as the fine ash at the LSKT-A/B boundary indicate NNE–SSW extending depositional fans with the source area in the western part of the Ovaçik caldera. The MSKT pyroclastic flow and surge deposits form a SW-extending main lobe related to paleotopography where the deposits are thickest.Internal bedding and lithic distribution of the LSKT-A result from intermittent activity due to significant vent wall instabilities. Reductions in eruption power from (partial) plugging of the vent produced fine ash deposits in near-vent locations and subsequent explosive expulsion of wall rock debris was responsible for the high lithic contents of the lapilli fall deposits. A period of vent closure promoted fine ash fall deposition at the end of LSKT-A. The subsequent main plinian phase of the LSKT-B evolved from stable vent conditions after some initial gravitational column collapses during the early ascent of the re-established eruption plume. The ash-and-pumice surges of the MSKT-A are interpreted as deposits from phreatomagmatic activity prior to the main pyroclastic flow formation of the MSKT-B.  相似文献   
42.
Regional anomalies of the surface climate over Europe are defined by a simultanous EOF-analysis of the normalized monthly mean sea level pressure, temperature and precipitation fields of 100 winters (December–February, 1887–1986) at 40 stations. The monthly amplitudes of the first EOF (about 25% of the total variance) are used as an index for the monthly winter climate anomaly. They characterize a high (low) pressure cell over central Europe associated with a positive (negative) temperature and precipitation anomaly over northern (central-southern) Europe as indicated by a northward (southward) shift of the tail end of the cross-Atlantic cyclone track. These patterns resemble the phenomenological anticyclonic (cyclonic) Grosswetter classification and the European blocking (enhanced zonal flow) regime. The second EOF is of similar magnitude and gives latitudinal corrections to these two basic flow regimes. The joint probability distribution of both amplitudes shows a weak bimodality mainly associated with the first EOF. Further insight into the underlying physical processes of the climate anomaly patterns in Europe is obtained from the extended Eliassen-Palm flux diagnostics of the barotropic transient eddy-mean flow interaction (Hoskins et al. 1983) and the stationary wave propagation (Plumb 1985). The diagnostics confined to the barotropic components and applied to the regression and the composite anomaly fields of the transient and stationary eddy flows of the 500 hPa geopotential (1946–87, north of 20°N) leads to the following results: (1) The bandpass filtered transient eddy variances of the 500 hPa geopotential show a shift of the cross-Atlantic storm track: In high (low) pressure situations over Europe the cross-Atlantic storm track intensity is enhanced (reduced) and its tail end is shifted northward (remains zonal); the North Pacific storm track extends further (less) eastward and thus closer to the west coast of North America. (2) The extreme high pressure system over Europe tends to be supported by an anomalous transient eddy forcing of the mean flow stream-function: it enhances the zonal wind to its north and generates anticyclonic vorticity about 10° upstream from its center. In the low pressure composite the anomalous cyclonic vorticity is generated reducing the zonal flow to its north. (3) The occurrence (lack) of a strong eastward stationary wave activity flux over the Atlantic is associated with the high (low) pressure situations over Europe. Finally, a positive feedback is conjectured between the stationary wavetrain modifying the tail end of the cross-Atlantic storm track and the transient eddies intensifying this anomaly.  相似文献   
43.
At four sites in Turkey and Armenia the physico-chemical properties of thermal and mineral waters were monitored continuously during the Izmit and Düzce earthquakes that occurred along the North Anatolian fault in August and November 1999. The epicentral distances between the moment magnitude (Mw) 7.6 Izmit earthquake and the monitoring locations were 313, 488, 1,161, and 1,395 km. At the most distant site, the specific electrical conductivity of mineral water from a flowing artesian well dropped co-seismically and postseismically by 7%. No changes were observed at the other sites, although the estimated earthquake strains and peak ground accelerations are much higher. A similar pattern was observed after the Düzce earthquake, which happened three months after the Izmit event. The response of a hydrogeological system seems to depend on the site characteristics rather than on the nature of the earthquake. A hydrogeological model for the sensitive observation site farthest from the Izmit earthquake explains the observations in terms of a changed mixing ratio between two fluid components. Passing seismic waves may trigger a local pore-pressure increase according to the mechanism of advective overpressure. The preconditions for this mechanism, free gas bubbles in the aquifer in combination with a trap for rising bubbles, is probably not fulfilled by the other groundwater systems. Electronic Publication  相似文献   
44.
Wal-Mart entered the German market at the end of 1997 but is still running at a loss in its 92 stores. This article tests the hypothesis that there are two main reasons for Wal-Mart’s problems in Germany. First of all, Wal-Mart is competing against very strong and well established deep discounters, especially Aldi. Secondly, there is the difference between the so-called Wal-Mart culture and German customer values. So far, Wal-Mart has not managed to close this gap or create a positive image in Germany. The first part of the article describes the differences between the two retail companies Wal-Mart and Aldi, whereas the second part focuses on the consumer perspective. Four hundred people were interviewed on the phone about their shopping behaviour in the city of Würzburg (northern Bavaria, 140,000 inhabitants). This survey is part of an international study also undertaken in Canada, Great Britain and China.  相似文献   
45.
— Knowledge of rock properties controlling the fluid movement is a basic prerequisite to understand the dynamical processes and the temperature and stress regime of the upper crust. Fracture networks were investigated on different scales to obtain quantitative results of fracture geometry like fracture length, orientation and fracture frequencies. Due to the scale effect, these parameters differ in several orders of magnitude in dependence of the scale of investigation. On the microscopic scale, fluorescent thin sections from cores were analysed and permeability was estimated for 2-D hydraulic networks. On the macroscopic scale, fracture parameters were determined from images of structural borehole measurements. The vicinity of the drill site represents the megascopic scale, where seismic reflectors were assumed as active hydraulic structures for construction of a fracture network. Compiling the fracture densities from all investigated scales and taking into consideration only the networks above the percolation threshold, the fracture length distribution follows a power law with an exponent of ?1.9 ± 0.05. Besides the scale differences of the geometric parameters like fracture density and length and the hydraulic parameters like permeability, the connectivity of the networks seems to be a confining characteristic. This is quantitatively described by the percolation parameter and the mean number of intersections per fracture. When assuming a macroscopic hydraulic system at the percolation threshold for the KTB site, the macroscopic mean fracture length can be estimated to approximately 30 m. This stands in agreement with the hydraulic experiments on site.  相似文献   
46.
Contributions to Mineralogy and Petrology - The 1.8–1.7&;nbsp;Ga Eidsfjord Anorthosite Complex on Langøy, Vesterålen, north Norway is thrust over monzonitic gneisses in a...  相似文献   
47.
In three field campaigns between the years 2000 and 2004 geophysical measurements were conducted in the Ejina Basin, NW China. Research work in the year 2004, which is described in this paper, was concentrated on the Gurinai Structure (101°25′E, 41°N) situated in the southeastern part of the Ejina Basin in transition to the dune fields of the Badain Jaran Shamo. On satellite images the Gurinai Structure can be identified by two almost 100 km long, subparallel, N–S-striking lineaments, which may indicate tectonic deformations of late Quaternary sediments. To get a coherent picture of the structure a geophysical survey employing three electromagnetic methods – magnetotellurics (MT), transient electromagnetics (TEM), and geoelectrics (DC) – has been conducted to map the subsurface resistivity at different depth scales.The geophysical data interpretation for shallow and intermediate depth down to a few hundred meters links the subsurface distribution of electric resistivity to geomorphological units known from field work in reference with satellite images. The westerly lineament of the Gurinai Structure coincides with a subvertical change in electric resistivity. Together with geomorphological indications from fieldwork and the analysis of elevation data (SRTM), a tectonic deformation of unconsolidated sediments along a fault with an extensional component is interpreted. In the central and eastern part of the Gurinai Structure a shallow resistive subsurface layer can be traced into the first dunes of the Badain Jaran Shamo. This resistive subsurface layer is linked to the presence of fresh water, indicating infiltration from the dune field. Also, in the eastern part of the Gurinai Structure a resistive, approximately ENE-striking feature can be seen at intermediate depth, which is interpreted as a crystalline basement ridge. Towards the southern margin of the Gurinai Structure a trough-shaped unit with low resistivities and a thickness of about 1 km is identified and can be explained by a sediment package saturated with fluids of high salinity or substantial amounts of clay. The strike direction of the structure can be connected to the regional pattern of tectonic faults and seismicity.The interpretation of electromagnetic data at various depth scales contributes to the general understanding of the Ejina Basin's buildup and tectonic setting in the vicinity of the Gurinai Structure.  相似文献   
48.
Carbon dioxide, latent and sensible heat fluxes were measured by means of the eddy covariance method above a mountain meadow situated on a steep slope in the Stubai Valley in Austria, based on the hypothesis that, due to the low canopy height, measurements can be made in the shallow equilibrium layer where the wind field exhibits characteristics akin to level terrain. In order to test the validity of this hypothesis and to identify effects of complex terrain in the turbulence measurements, data were subjected to a rigorous testing procedure using a series of quality control measures established for surface-layer flows. The resulting high quality dataset comprised 36% of the original observations, the substantial reduction being mainly due to a change in surface roughness and associated fetch limitations in the wind sector dominating during nighttime and transition periods. The validity of the high quality dataset was further assessed by two independent tests: (i) a comparison with the net ecosystem carbon dioxide exchange measured by means of ecosystem chambers, and (ii) the ability of the eddy covariance measurements to close the energy balance. The net ecosystem CO2 exchange measured by the eddy covariance method agreed reasonably well with ecosystem chamber measurements. The assessment of the energy balance closure showed that there was no significant difference in the correspondence between the meadow on the slope and another one situated on flat ground at the bottom of the Stubai Valley, available energy being underestimated by 28% and 29%, respectively. We thus conclude that, appropriate quality control provided, the eddy covariance measurements made above a mountain meadow on a steep slope are of similar quality as compared to flat terrain.  相似文献   
49.
Numerous pollen records across the upper Tibetan Plateau indicate that in the early part of the mid-Holocene, Kobresia-rich high-alpine meadows invaded areas formerly dominated by alpine steppe vegetation rich in Artemisia. We examine climate, land-use, and CO2 concentration changes as potential drivers for this marked vegetation change. The climatic implications of these vegetational shifts are explored by applying a newly developed pollen-based moisture-balance transfer-function to fossil pollen spectra from Koucha Lake on the north-eastern Tibetan Plateau (34.0°N; 97.2°E; 4540 m a.s.l.) and Xuguo Lake on the central Tibetan Plateau (31.97°N; 90.3°E; 4595 m a.s.l.), both located in the meadow-steppe transition zone. Reconstructed moisture-balances were markedly reduced (by ~150–180 mm) during the early mid-Holocene compared to the late-Holocene. These findings contradict most other records from the Indian monsoonal realm and also most non-pollen records from the Tibetan Plateau that indicate a rather wet early- and mid-Holocene. The extent and timing of anthropogenic land-use involving grazing by large herbivores on the upper Tibetan Plateau and its possible impacts on high-alpine vegetation are still mostly unknown due to the lack of relevant archaeological evidence. Arguments against a mainly anthropogenic origin of Kobresia high-alpine meadows are the discovery of the widespread expansion of obviously ‘natural’ Kobresia meadows on the south-eastern Tibetan Plateau during the Lateglacial period indicating the natural origin of this vegetation type and the lack of any concurrence between modern human-driven vegetation shifts and the mid-Holocene compositional changes. Vegetation types are known to respond to atmospheric CO2 concentration changes, at least on glacial–interglacial scales. This assumption is confirmed by our sensitivity study where we model Tibetan vegetation at different CO2 concentrations of 375 (present-day), 260 (early Holocene), and 650 ppm (future scenario) using the BIOME4 global vegetation model. Previous experimental studies confirm that vegetation growing on dry and high sites is particularly sensitive to CO2 changes. Here we propose that the replacement of drought-resistant alpine steppes (that are well adapted to low CO2 concentrations) by mesic Kobresia meadows can, at least, be partly interpreted as a response to the increase of CO2 concentration since 7000 years ago due to fertilization and water-saving effects. Our hypothesis is corroborated by former CO2 fertilization experiments performed on various dry grasslands and by the strong recent expansion of high-alpine meadows documented by remote sensing studies in response to recent CO2 increases.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号