首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   21篇
  国内免费   52篇
大气科学   80篇
地球物理   2篇
地质学   8篇
海洋学   3篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   9篇
  2013年   6篇
  2012年   5篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2000年   5篇
  1999年   2篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1982年   2篇
排序方式: 共有95条查询结果,搜索用时 244 毫秒
11.
2013/2014年东亚冬季风异常偏弱的可能成因   总被引:3,自引:2,他引:1  
司东  李清泉  柳艳菊  王遵娅  袁媛  王东阡 《气象》2014,40(7):891-897
2005年之后东亚冬季风连续7年强度偏强,而2013/2014年冬季,东亚冬季风强度突然由强转弱,原因可能与前期秋季北极海冰的异常有关,受2013年秋季北极海冰异常影响,冬季西伯利亚高压偏弱,进而导致东亚冬季风偏弱以及我国气温偏高。季内,东亚冬季风强度变化显著,前冬偏弱,后冬偏强。受冬季风季节内变化影响,我国前冬暖、后冬冷;此外,前冬暖、后冬冷还受到北太平洋上空阻塞高压的异常活动影响,北太平洋地区的阻塞高压加强西移至日界线以西,导致东亚地区经向型环流加强,改变了前冬以纬向型为主的环流,前冬高纬地区堆积的冷空气向东亚地区侵袭。加之,前冬我国气温偏高,导致后冬我国多地降温显著,气温由偏高转偏低。而阻塞高压的西移可能与平流层环流的异常活动有关。  相似文献   
12.
西北地区是中国西部大开发的主战场和重要的生态环境安全屏障区,该区气候变化直接影响到“一带一路”倡议实施中的水资源、生态和环境安全。在全球气候变化背景下,西北地区气候呈现出明显的“暖湿化”现象并呈东扩发展趋势,极端降水事件趋多趋强。一方面,降水量的增加有利于该地区的水资源可持续利用和生态环境保护;另一方面,极端降水的增加也对区域综合防灾减灾提出了新挑战。针对近年来备受关注的西北地区气候“暖湿化”问题,从其演变特征、形成原因和物理机制以及未来趋势预估等方面进行了总结和评述,归纳了已有的科学共识,并进一步剖析了当前研究中存在的问题和不足,最后对未来科学研究的重点方向进行了展望。对西北地区气候“暖湿化”趋势、成因及未来预估进行系统回顾,将对今后深入研究西北地区气候“暖湿化”问题具有重要的科学指导意义。  相似文献   
13.
中国大陆降水时空变异规律——I.气候学特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为系统了解大尺度降水气候特征,利用2 300多个国家级气象站逐日观测资料,分析了中国大陆1956—2013年多年平均降水的空间分布和季节性变化规律。主要新认识有:① 暴雨量、暴雨日数和暴雨强度最高的站点在华南沿海,而小雨量、小雨日数最多的站点主要在江南内陆山区、丘陵;东部季风区山地、丘陵多出现低强度降水,平原和沿海易出现高强度降水;② 四季降水量均由西北内陆向东南沿海递增,南方秋季降水量明显小于春季,但华西和江南沿海秋季降水量较多,冬季降水在东南丘陵出现高值中心;③ 珠江和东南诸河流域降水量年内存在2个峰值,其中珠江流域有6月主峰值和8月次峰值,东南诸河流域主峰在6月中下旬,次峰在8月末,长江流域总体表现为单峰型,出现在6月下旬和7月初,西南诸河流域和北方所有流域降水均表现为夏季单峰型;④ 南方各大河流域从2月末到6月中下旬陆续进入雨季,北方各大河流域进入雨季时间集中在6月末、7月初;南、北方雨季结束时间比雨季开始时间集中,从南到北进入雨季时间持续120 d以上,而从北到南退出雨季时间则仅持续不到45 d;⑤ 丰雨期的持续时间,珠江流域从5月初到9月上旬后期,东南诸河从5月上旬到7月上旬,8月末到9月初再度短暂出现,长江流域从6月中下旬到7月中旬,西南诸河从7月中旬到 8月下旬,淮河流域从7月上旬至7月底、8月初,辽河流域在8月初出现极短丰雨期;⑥ 降水年际变异性最高的站点在青藏高原西南、塔里木盆地、阿拉善高原、华北平原北部和汾河谷地,海河流域年降水具有最大的变异系数。  相似文献   
14.
2019年中国气候主要特征及主要天气气候事件   总被引:3,自引:0,他引:3  
2019年我国气候总体呈现暖湿特征。全国年平均气温较常年同期偏高0.79℃,为1951年以来连续第五暖年,四季气温均偏高,春、秋季明显偏暖;年降水量为645.5 mm,较常年同期偏多2.5%,冬、春、夏季降水偏多,秋季偏少。华南前汛期开始早、结束晚,为1961年以来最长前汛期,雨量为1961年以来次多;西南雨季开始和结束均偏晚,雨量偏少;入梅晚、出梅早,梅雨量偏少;华北雨季开始晚,结束与常年一致,雨量偏少;东北雨季开始早、结束晚,雨量偏多;华西秋雨开始早、结束晚,雨量偏多。2019年,台风生成多,登陆强度总体偏弱,仅台风利奇马灾损重;暴雨洪涝、干旱、强对流、低温冷冻害和雪灾、沙尘暴等气象灾害均偏轻。  相似文献   
15.
亚非夏季风系统包括非洲夏季风、南亚夏季风和东亚夏季风。它是全球季风系统中具有高度整体一致性变化的系统,其主要原因是亚非夏季风系统具有相同的主要驱动力:AMO(Atlantic Multidecadal Oscillation,大西洋多年代际振荡)和PDO(Pacific Decadal Oscillation,太平洋年代际振荡)海洋年代际变化模态。在此前提下,本文首先阐述了AMO对亚非夏季风的强迫作用与遥相关作用,特别强调了它在亚非夏季风及其降水年代际转型中的作用;其次讨论了PDO与冬春积雪的年代际变化对东亚夏季风雨带的协同作用;最后综合分析了AMO、PDO与IOBM(Indian Ocean Basin Mode,印度洋海盆一致模态)的协同作用,指出印度洋海洋模态在年代尺度上独立于AMO与PDO的相关组合,主要起着加强东亚夏季风活动的作用。  相似文献   
16.
2012年海洋和大气环流异常及其对中国气候的影响   总被引:3,自引:1,他引:2  
文章主要对2011/2012年冬季至2012年秋季的海洋和大气环流异常进行分析,并讨论这些异常特征对中国气温和降水的主要影响。分析表明:2012年3月拉尼娜事件结束,赤道中东太平洋在7—8月出现明显暖水波动,之后进入正常状态。暖水波动使9—10月西太副高偏强偏西控制长江以南大部,造成该地温高雨少:8—9月,热带印度洋呈显著的偶极子正位相模态,在热带东太平洋激发出异常反气旋,其西北侧西南气流有利于暖湿气流影响中国华西南部出现明显秋雨。2012年南海夏季风爆发偏早1候,结束偏晚2候,强度偏弱;东亚夏季风为1951年以来第四强,使得东亚夏季风雨带位置偏北,中国北方大部夏季降水偏多。受海温和大气环流异常等的共同影响,我国出现了冬冷、春夏热、秋冷和夏季降水"北多南少"的气候特征。  相似文献   
17.
宋文玲  顾薇  柳艳菊  刘长征 《气象》2013,39(9):1204-1209
本文利用黄河中游61站降水资料,分析了其变化规律和同期及前期环境场特征,并建立了夏季降水预测模型。研究发现:黄河中游夏季降水具有显著的年际变化特征,显著周期在3年左右;黄河中游夏季降水主要受到同期东亚高空急流、西太平洋副热带高压(以下简称副高)以及贝加尔湖附近低槽的影响,当急流和副高偏强(弱)偏北(南)、贝加尔湖附近高度场偏低(高)时,黄河中游降水偏多(少)。另外,前期秋季南方涛动指数、北非副热带高压(20°W~60°E)、南海副热带高压(100°~120°E)、北半球副高强度及北半球极涡强度发生异常时,对夏季环流产生影响,从而影响黄河中游夏季降水,据此,建立预测模型。评估发现该模型具有较强的预测能力,可用于黄河中游夏季降水的定量预测。  相似文献   
18.
2011年初夏我国长江中下游降水的气候特征及成因   总被引:6,自引:3,他引:3  
文章主要分析了2011年初夏长江中下游降水的气候特征及其成因。结果表明:2011年5月长江中下游降水异常偏少,6月转为异常偏多,出现了明显的旱涝转换。长江中下游地区的旱涝转换主要受南海季风、东亚季风强度以及西太平洋副热带高压(副高)的异常快速北跳的影响。研究还发现,6月亚洲中高纬长期维持两槽一脊的环流形势,东北冷涡活动频繁,多次引导冷空气南下。同时,副高异常偏北、偏西,并出现多次西伸过程。由于冷涡的加强南压与西伸的副高相互作用,促使长江以南地区西南气流明显增强,使得冷暖空气在长江中下游地区交汇,最终导致该地降水偏多。  相似文献   
19.
2011年8月气候异常及成因分析   总被引:4,自引:1,他引:3  
在总结2011年8月我国气候异常与大气环流特征的基础上,针对西南干旱和热带气旋活动偏少两大气候异常事件的成因进行了分析。结果表明:高度场偏高、西太平洋副热带高压偏强、夏季风偏弱和水汽条件较差等大气环流异常是导致高温干旱的主要原因;中部型拉尼娜事件的滞后影响和印度洋偏暖的影响是西南干旱的重要外强迫条件。南海对流活动偏弱,菲律宾以东季风槽位置偏北,热带气旋活动区域垂直风切偏大,西北太平洋副热带高压偏强等因素导致热带气旋活动偏少。  相似文献   
20.
A heavy rainstorm named Beijing “7.21” heavy rainstorm hit Beijing on 21 to 22 July 2012, which is recorded as the most severe rainstorm since 1951. The daily precipitation amount in many stations in Beijing has broken the history record. Based on the NCAR/NCEP reanalysis data and precipitation observation,the large-scale conditions which caused the “7.21” heavy rainstorm are investigated, with the emphasis on the relationship between it and an equatorial convergence zone, Asian summer monsoon as well as the tropical cyclone over the ocean from the Philippines to the South China Sea (SCS). The results indicated that a great deal of southerly warm and wet moisture carried by northward migrating Asian summer monsoon provided plenty of moisture supplying for the “7.21” heavy rainstorm. When the warm and wet moisture met with the strong cold temperature advection induced by cold troughs or vortexes, an obviously unstable stratification formed, thus leading to the occurrence of heavy precipitation. Without this kind of intense moisture transport, the rainstorm only relying on the role of the cold air from mid- and higher- latitudes could not reach the record-breaking intensity. Further research suggested that the northward movement of an Asian monsoonal warm and wet moisture transport conveyor (MWWTC) was closely related with the active phase of a 30-60 day intra-seasonal oscillation of the Asian summer monsoon. During this time, the monsoon surge triggered and maintained the northward movement of the MWWTC. In addition, compared with another heavy rainstorm named “63.8” heavy rainstorm, which occurred over the Huaihe River Basin in the mid-August 1963 and seriously affected North China, a similar MWWTC was also observed. It was just the intense interaction of the MWWTC with strong cold air from the north that caused this severe rain storm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号