首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last few years, the pre-decreases or pre-increases of the cosmic-ray intensity observed before a Forbush decrease, called the precursor effect and registered by the worldwide neutron monitor network, have been investigated for different cases of intense events. The Forbush decreases presented in this particular study were chosen from a list of events that occurred in the time period 1967?–?2006 and were characterized by an enhanced first harmonic of cosmic-ray anisotropy prior to the interplanetary disturbance arrival. The asymptotic longitudinal cosmic-ray distribution diagrams for the events under consideration were studied using the “Ring of Stations” method, and data on solar flares, solar-wind speed, geomagnetic indices, and interplanetary magnetic field were analyzed in detail. The results revealed that the use of this method allowed the selection of a large number of events with well-defined precursors, which could be separated into at least three categories, according to duration and longitudinal zone. Finally, this analysis showed that the first harmonic of cosmic-ray anisotropy could serve as an adequate tool in the search for precursors and could also be evidence for them.  相似文献   

2.
We report on the 22?–?23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth’s magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22?–?23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured \({\sim}\, 56^{\circ }\) degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun–Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton radiation storm that began on 21 June. We did not find a signal from this SEP at ground level. The details of these observations are presented.  相似文献   

3.
We investigate the effects of two magnetic clouds on hourly cosmic-ray intensity profiles in the Forbush decrease events in November 2004 observed by 47 ground-based neutron-monitor stations. By using a wavelet decomposition, the start time of the main phase in a Forbush decrease event can be defined, and then clearer definitions of initial phase, main phase, and recovery phase are proposed. Our analyses suggest that the main phase of this Fd event precedes the arrival time of the first magnetic cloud by about three hours, and the Fds observed at the majority (39/47) of the stations were found to originate from the sheath region as indicated by large fluctuations in magnetic field vectors at 19:00 UT on 7 November 2004, regardless of the station location. In addition, about 45% of the onset times of the recovery phase in the Forbush decreases took place at 04:00 UT on 10 November, independent of the station position. The results presented here support the hypothesis that the sheath region between the shock and the magnetic cloud, especially the enhanced turbulent magnetic field, results in the scattering of cosmic-ray particles, and causes the following Forbush decreases. Analysis of variation profiles from different neutron monitors reveals the global simultaneity of this Forbush decrease event. Moreover, we infer that the interplanetary disturbance was asymmetric when it reached the Earth, inclined to the southern hemisphere. These results provide several observational constraints for more detailed simulations of the Forbush decrease events with time-dependent cosmic-ray modulation models.  相似文献   

4.
Ifedili  S. O. 《Solar physics》1998,180(1-2):487-493
Using the cosmic-ray intensity data recorded with ground-based monitors at Mt. Washington and Deep River, and with cosmic-ray telescopes on Pioneer 8 and 9 spacecraft as well as the 2-hour averages of the IMF (magnitude and direction) and the solar wind bulk speed and density at 1 AU, the cosmic-ray decreases and interplanetary disturbances, that occurred during the period of solar magnetic polarity reversal in solar cycle 20, were investigated.We observed a two-step Forbush decrease on 22–23 November 1969, and a Forbush decrease on 26 November 1969, which are respectively consistent with the model of Barnden (1973), and of Parker (1963) and Barnden (1973). Only one Forbush decrease event was observed in December 1969, a period during which there was a solar magnetic polarity reversal; the Forbush decrease was attributed to a long-lived corotating high-speed solar wind stream. This is indicative that at heliolongitudes from 43° E to 70° W of S–E radial, covered by the observations, the solar magnetic polarity reversal in solar cycle 20 was not carried by, nor related to, individual transient structures, and that the reversal most probably evolved gradually.  相似文献   

5.
During the second interval of the Study of Travelling Interplanetary Phenomena (STIP, 20 March–5 May, 1976) a series of solar, interplanetary, geomagnetic and cosmic-ray events have occurred. These are surprising events, since this period falls into the minimum of the solar activity of the past solar cycle. The present analysis is concentrated on Forbush decreases, cosmic-ray increases, geomagnetic variations and the related solar wind disturbances recorded by the heliocentric satellites Helios-1, 2 and the geocentric IMP-8, in the period 23 March–7 April, 1976. The cosmic-ray enhancements on 26 March and 1 April were of geomagnetic origin and particularly expressed in middle latitude stations during the largeDst magnetic field depressions. The detected multiple Forbush decreases are related with the type IV solar flares, all produced by the same active region (McMath Plage 14143). The relative positions among the satellites Helios-1, 2, the Sun, and the Earth were very favorable in this period for studying these events, since Helios-1 approached the Sun to its perihelion and Helios-2 was lined-up with the Earth. Helios-2 detected two shock fronts on 30 March and 1 April, respectively, and Helios-1 detected a tangential discontinuity on 26 March. An attempt is made to relate these shock fronts with the erupted solar flares and Storm Sudden Commencements (SSC) recorded on the Earth and to estimate a lower limit of the deceleration distance of the involved shock waves.  相似文献   

6.
S. O. Ifedili 《Solar physics》1996,168(1):195-203
The Forbush decrease in the cosmic radiation has been measured by a charged-particle monitor (E p )> 50 MeV) on board the OGO-6 satellite. For the events of June 7–10, September 27–30, and November 21–December 6, 1969, the Forbush decrease totalled 4.6, 6, and 6% in amplitude, respectively, for the Mt. Washington neutron monitor (P c = 1.24 GV), and 5.2, 13, and 16%, respectively, for the OGO-6 charged-particle monitor in the polar region (P c < 0.3 GB). The depression in the OGO-6 charged-particle monitor was larger at higher geomagnetic latitudes than at lower latitudes. However, for the events of June 7–10 and November 21–December 6, 1969, the Forbush decrease totalled 20 and 15% in amplitude respectively for the Pioneer 8 cosmic-ray telescope (P c > 0.4 GV), which was at the respective distances of 1.08 AU and 1 AU from the Sun. These results indicate that the Forbush decrease has greater effects on lower-energy charged particles, the magnitude of the effect also depending on the location of the detector with respect to the modulating region.The spacecraft data near Earth also showed that, for vertical cut-off rigidities P c 1.8 GV, the total percentage decrease in the amplitudes of the Forbush decreases can be represented by –mP c + k, where m and k are each constant for the particular Forbush decrease but which increase with increasing Mt. Washington neutron monitor monthly average rates, an indication of a flattening of the rigidity dependence of Forbush decreases towards maximum solar modulation.  相似文献   

7.
A usual event, called anisotropic cosmic-ray enhancement (ACRE), was observed as a small increase (\({\leq}\,5\%\)) in the count rates of polar neutron monitors during 12?–?19 UT on 07 June 2015. The enhancement was highly anisotropic, as detected only by neutron monitors with asymptotic directions in the southwest quadrant in geocentric solar ecliptic (GSE) coordinates. The estimated rigidity of the corresponding particles is \({\leq}\,1\) GV. No associated detectable increase was found in the space-borne data from the Geostationary Operational Environmental Satellite (GOES), the Energetic and Relativistic Nuclei and Electron (ERNE) on board the Solar and Heliospheric Observatory (SOHO), or the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instruments, whose sensitivity was not sufficient to detect the event. No solar energetic particles were present during that time interval. The heliospheric conditions were slightly disturbed, so that the interplanetary magnetic field strength gradually increased during the event, followed by an increase of the solar wind speed after the event. It is proposed that the event was related to a crossing of the boundary layer between two regions with different heliospheric parameters, with a strong gradient of low-rigidity (\({<}\,1\) GV) particles. It was apparently similar to another cosmic-ray enhancement (e.g., on 22 June 2015) that is thought to have been caused by the local anisotropy of Forbush decreases, with the difference that in our case, the interplanetary disturbance was not observed at Earth, but passed by southward for this event.  相似文献   

8.

Forbush decreases (FDs) are sharp reductions of the cosmic-ray (CR) intensity, following intense solar activity such as coronal mass ejections (CMEs) and their corresponding interplanetary shocks. In some cases, shocks create sudden storm commencements (SSCs) at the Earth’s magnetosphere with significant interest for space-weather studies. Preincreases and/or predecreases of CR intensity before the onset of FDs, known as precursory signals, have been widely examined by many authors. In this work, an attempt to define precursory signals that are not related to SSCs is presented. For the present analysis, CR data recorded by the ground-based Neutron Monitor Network as well as data on solar flares, CMEs, solar-wind speed, interplanetary magnetic field, and geomagnetic indices for the years 1969?–?2019 are used. To identify FDs that present precursors, the adopted criteria are mainly the FD amplitude (> 2%) and the equatorial CR anisotropy before the onset time (> 0.8%). The analysis of FDs and the study of their asymptotic-longitude CR distribution for precursors are based on the Global Survey Method and the Ring of Stations Method, respectively. Precursory signals are identified in 17 out of 27 events without SSCs.

  相似文献   

9.
High-speed solar wind streams (HSWS) were identified for solar cycles 22 and 23 (up to 2004). Preliminarily, HSWS were classified in three groups according to their continuous period of occurrence. In the declining phase of solar cycle 23, 2003 is found to be anomalous, showing a very large number of HSWS events of long duration (> ten days). We have studied the effect of HSWS on the cosmic-ray intensity as well as their relationship with geomagnetic disturbance index Ap on yearly, daily, and hourly bases. The yearly average of solar-wind speed was also found to be maximum in 2003. Being within the declining phase of solar activity, the occurrence of solar flares in 2003 is quite low. In particular during HSWS, no solar flares have been observed. Associations with cosmic-ray changes do not support the notion that the HSWS are usually effective in producing significant cosmic-ray decreases. Out of 12 HSWS events observed during the period 2002 (December) to 2003, four events of significant cosmic-ray decreases at all the stations have been selected for further analysis. The cosmic-ray intensity has been found to decrease during the first phase of the event (first five days of HSWS) at all three neutron-monitor stations situated at different latitudes with different cutoff rigidities. The rigidity spectra of observed decreases in cosmic-ray intensity for these four cases have been found to be significantly different than that of Fds (Forbush decrease). In two cases the spectra are softer, whereas in the other two they are harder than that of Fds. However, if the average of all four events is considered together then the spectra of the decrease in cosmic rays during HSWS exactly match that of Fds. Such a result implies that initially individual events should be considered, instead of combining them together, as was done earlier. The Ap index is also found to generally increase in the first phase of the event. However, the four events selected on the basis of cosmic-ray decrease are not always associated with enhanced values of the Ap index. As such, the significance of our study is that further detailed investigations for much longer periods and on an event-by-event basis is required to understand the effect of coronal-hole-associated HSWS.  相似文献   

10.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

11.
Identifying the precursors (pre-increases or pre-decreases) of a geomagnetic storm or a Forbush decrease is of great importance since they can forecast and warn of oncoming space weather effects. A wide investigation using 93 events which occurred in the period from 1967 to 2006 with an anisotropy A xy >1.2% has been conducted. Twenty-seven of the events revealed clear signs of precursors and were classified into three categories. Here we present one of the aforementioned groups, including five Forbush decreases (24 June 1980, 28 October 2000, 17 August 2001, 23 April 2002, and 10 May 2002). Apart from hourly cosmic ray intensity data, provided by the worldwide network of neutron monitor stations, data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field were used for the analysis of the examined cosmic ray intensity decreases. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “ring of stations” method. Results reveal a long pre-decrease up to 24 hours before the shock arrival in a narrow longitudinal zone from 90° to 180°.  相似文献   

12.
13.
R. P. Kane 《Solar physics》2014,289(7):2669-2675
When a Coronal Mass Ejection (CME) is ejected by the Sun, it reaches the Earth orbit in a modified state and is called an ICME (Interplanetary CME). When an ICME blob engulfs the Earth, short-scale cosmic-ray (CR) storms (Forbush decreases, FDs) occur, sometimes accompanied by geomagnetic Dst storms, if the B z component in the blob is negative. Generally, this is a sudden process that causes abrupt changes. However, sometimes before this abrupt change (FD) due to strong ICME blobs, there are slow, small changes in interplanetary parameters such as steady increases in solar wind speed V, which are small, but can last for several hours. In the present communication, CR changes in such an event are illustrated in the period 1?–?3 October 2013, when V increased steadily from ~?200 km?s?1 to ~?400 km?s?1 during 24 hours on 1 October 2013. The CR intensities decreased by 1?–?2 % during some hours of this 24-hour interval, indicating that CR intensities do respond to these weak but long-lasting increases in interplanetary solar wind speed.  相似文献   

14.
Two types of interplanetary shocks have been identified and classified into two groups, those associated with a helium-enhancement and those not associated with any helium-enhancement. The cosmic-ray intensity decreases at Calgary neutron monitor are studied with respect to the arrival time of the two groups of shocks. The observations show that large Forbush decreases are caused by shocks associated with the helium-enhancement; and those not associated with He shocks show comparatively a small decrease in cosmic-ray intensity.  相似文献   

15.
As suggested in many studies the pre-increases or pre-decreases of the cosmic ray intensity (known as precursors), which usually precede a Forbush decrease, could serve as a useful tool for studying space weather effects. The events in this study were chosen based on two criteria. Firstly, the heliolongitude of the solar flare associated with each cosmic ray intensity decrease was in the 50°?–70°W sector and, secondly, the values of the geomagnetic activity index, Kp max, were ≥?5. Twenty five events were selected from 1967 to 2006. We have used data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field in our detailed analysis. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “Ring of Stations” method for all the events. The results reveal clear signs of precursors in 60 % of selected events.  相似文献   

16.
We analyze and compare the geomagnetic and galactic cosmic-ray (GCR) response of selected solar events, particularly the campaign events of the group International Study of Earth-affecting Solar Transients (ISEST) of the program Variability of the Sun and Its Terrestrial Impact (VarSITI). These selected events correspond to Solar Cycle 24, and we identified various of their features during their near-Earth passage. We evaluated the hourly data of geomagnetic indices and ground-based neutron monitors and the concurrent data of interplanetary plasma and field parameters. We recognized distinct features of these events and solar wind parameters when the geomagnetic disturbance was at its peak and when the cosmic-ray intensity was most affected. We also discuss the similarities and differences in the geoeffectiveness and GCR response of the solar and interplanetary structures in the light of plasma and field variations and physical mechanism(s), which play a crucial role in influencing the geomagnetic activity and GCR intensity.  相似文献   

17.
The cosmic ray modulation in the period 1965–70 is investigated by the comparison of the intensity data of groundbased stations with different response to primaries. The socalled step-like modulation, already observed by other authors, is found to be produced by the overlapping between the quasi-stationary solar cycle modulation and the Forbush decrease events. Moreover a good correlation between the cosmic-ray variance (Forbush decrease index) and the 5303 coronal intensity at middle heliolatitudes (17.5°–42.5°) is found, while the quasi-stationary solar cycle modulation is well correlated with the 5303 intensity near the solar equator (0°–17.5°). The different time behaviour of the solar activity at different heliolatitudes causes the step-like modulation.  相似文献   

18.
Exarhos  G.  Moussas  X. 《Solar physics》2001,200(1-2):283-292
We show that the temporal variations of the integrated galactic cosmic-ray intensity at neutron monitor energies (approximately above 3 GeV) can be reproduced applying a semi-empirical 1-D diffusion-convection model for the cosmic-ray transport in interplanetary space. We divide the interplanetary region into `magnetic shells' and find the relative reduction that each shell causes to the cosmic-ray intensity. Then the cosmic-ray intensity at the Earth is reproduced by the successive influence of all shells between the Earth and the heliospheric termination shock. We find that the position of the termination shock does not significantly affect the cosmic-ray intensity although there are some differences between the results for a constant and a variable termination shock radius. We also reproduce the cosmic-ray intensity applying the analytical solution of the force-field approximation (Perko, 1987) and find that the results cannot fit the observed data. Our results are compared with the Climax (geomagnetic cut-off 3 GV) and Huancayo (geomagnetic cut-off 13 GV) neutron monitor measurements for almost two solar cycles (1976–1996).  相似文献   

19.
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ∼500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ∼-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days. Published in Astrofizika, Vol. 51, No. 2, pp. 255–265 (May 2008).  相似文献   

20.
We have examined the characteristics of the unusual worldwide fluctuations of cosmic-ray intensity on July 14–15, 1961, using corrected hourly data from global network of neutron and meson detectors. A careful study of the associated solar, interplanetary and geophysical phenomena has also been made. These investigations lead us to recognise the dominant role played by the Interplanetary Magnetic Field Inhomogeneities (IMFI) in modulating galactic cosmic-ray flux received at earth during recovery from Forbush decreases. When approaching the earth from the sunward side the IMFI's scatter galactic cosmic rays diffusing towards solar equatorial plane from higher heliolatitudes on to the interplanetary magnetic-field lines which connect to earth. When propagating past the orbit of the earth, the IMFI's set up a flow of scattered galactic cosmic-ray flux in the general direction of the earth. Most of these cosmic rays probably sink in the sun. Transient Spatial Anisotropies are thus set up in the vicinity of the earth in cosmic-ray intensity as viewed by ground-based detectors. Depending upon the relative position of the region abounding in IMFI's and the earth, these short-lived anisotropies appear either from sunward or antisun directions. Sometimes the configuration is such as to set up bidirectional anisotropies. Implications of this broad picture are discussed qualitatively.Our analysis also enables us to place constraint on the mechanism responsible for heating the solar corona over active regions, which we feel must be taken into account by all theoretical models on the subject.This research is supported in part by U.S. Air Force Office of Scientific Research under grant AF-AFOSR-319-66. The paper was presented at the Tenth International Conference on Cosmic Rays, Calgary, June 18–29, 1967.Now at the Dept. of Physics and Astronomy, University of New Mexico, Albuquerque, N.M., U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号