首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Precise global geoid and gravity anomaly information serves essentially three different kinds of applications in Earth sciences: gravity and geoid anomalies reflect density anomalies in oceanic and continental lithosphere and the mantle; dynamic ocean topography as derived from the combination of satellite altimetry and a global geoid model can be directly transformed into a global map of ocean surface circulation; any redistribution or exchange of mass in Earth system results in temporal gravity and geoid changes. After completion of the dedicated gravity satellite missions GRACE and GOCE a high standard of global gravity determination, both of the static and of the time varying field will be attained. Thus, it is the right time to investigate the future needs for improvements in the various fields of Earth sciences and to define the right strategy for future gravity field satellite missions.  相似文献   

2.
卫星跟踪卫星模式中轨道参数需求分析   总被引:8,自引:0,他引:8  
首次基于半解析法利用GRACE(Gravity Recovery and Climate Experiment)双星K波段星间速度误差、GPS接收机轨道误差和加速度计非保守力误差影响累计大地水准面精度的联合模型开展了卫星跟踪卫星模式中轨道参数的需求分析.建议我国将来首颗重力卫星的平均轨道高度设计为400 km和平均星间距离设计为220 km较优.此研究不仅为我国将来卫星重力测量计划中轨道参数的优化选取以及全球重力场精度的有效和快速估计提供了理论基础和计算保证,同时对将来国际GRACE Follow-On地球重力测量计划和GRAIL(Gravity Recovery and Interior Laboratory)月球重力探测计划的发展方向具有一定的指导意义.  相似文献   

3.
《Global and Planetary Change》2006,50(1-2):112-126
Signatures between monthly global Earth gravity field solutions obtained from GRACE satellite mission data are analyzed with respect to continental water storage variability. GRACE gravity field models are derived in terms of Stokes' coefficients of a spherical harmonic expansion of the gravitational potential from the analysis of gravitational orbit perturbations of the two GRACE satellites using GPS high–low and K-band low–low intersatellite tracking and on-board accelerometry. Comparing the GRACE observations, i.e., the mass variability extracted from temporal gravity variations, with the water mass redistribution predicted by hydrological models, it is found that, when filtering with an averaging radius of 750 km, the hydrological signals generated by the world's major river basins are clearly recovered by GRACE. The analyses are based on differences in gravity and continental water mass distribution over 3- and 6-month intervals during the period April 2002 to May 2003. A background model uncertainty of some 35 mm in equivalent water column height from one month to another is estimated to be inherent in the present GRACE solutions at the selected filter length. The differences over 3 and 6 months between the GRACE monthly solutions reveal a signal of some 75 mm scattering with peak values of 400 mm in equivalent water column height changes over the continents, which is far above the uncertainty level and about 50% larger than predicted by global hydrological models. The inversion method, combining GRACE results with the signal and stochastic properties of a hydrological model as ‘a priori’ in a statistical least squares adjustment, significantly reduces the overall power in the obtained water mass estimates due to error reduction, but also reflects the current limitations in the hydrological models to represent total continental water storage change in particular for the major river basins.  相似文献   

4.
After GRACE and GOCE there will still be need and room for improvement of the knowledge (1) of the static gravity field at spatial scales between 40 km and 100 km, and (2) of the time varying gravity field at scales smaller than 500 km. This is shown based on the analysis of spectral signal power of various gravity field components and on the comparison with current knowledge and expected performance of GRACE and GOCE. Both, accuracy and resolution can be improved by future dedicated gravity satellite missions. For applications in geodesy, the spectral omission error due to the limited spatial resolution of a gravity satellite mission is a limiting factor. The recommended strategy is to extend as far as possible the spatial resolution of future missions, and to improve at the same time the modelling of the very small scale components using terrestrial gravity information and topographic models.We discuss the geodetic needs in improved gravity models in the areas of precise height systems, GNSS levelling, inertial navigation and precise orbit determination. Today global height systems with a 1 cm accuracy are required for sea level and ocean circulation studies. This can be achieved by a future satellite mission with higher spatial resolution in combination with improved local and regional gravity field modelling. A similar strategy could improve the very economic method of determination of physical heights by GNSS levelling from the decimeter to the centimeter level. In inertial vehicle navigation, in particular in sub-marine, aircraft and missile guidance, any improvement of global gravity field models would help to improve reliability and the radius of operation.  相似文献   

5.
Because the precise measurement of the Martian gravitational field plays a significant role in the future Mars exploration program, the future dedicated Mars satellite-to-satellite tracking (Mars-SST) gravity mission in China is investigated in detail for producing the next generation of the Mars gravity field model with high accuracy. Firstly, a new semi-numerical synthetical error model of the cumulative Martian geoid height influenced by the major error sources of the space-borne instruments is precisely established and efficiently verified. Secondly, the deep space network in combination with the satellite-to-satellite tracking in the low-low (DSN-SST-LL) mode is a preferred design owing to the high precision determination of the gravity maps, the low technical complexity of the satellite system and the successful experiences with the Earth’s Gravity Recovery and Climate Experiment (GRACE) projects and the lunar Gravity Recovery and Interior Laboratory (GRAIL) program. Finally, the future twin Mars-SST satellites plan to adopt the optimal matching accuracy indices of the satellite-equipped sensors (e.g., \(10^{-7}\) m/s in the inter-satellite range-rate from the interferometric laser ranging system (ILRS), 35 m in the orbital position tracked by the DSN and \(3\times 10^{-11}\) m/s2 in the non-conservative force from the drag-free control system (DFCS)) and the preferred orbital parameters (e.g., the orbital altitude of \(100\pm 50\) km and the inter-satellite range of \(50\pm 10\) km).  相似文献   

6.
Examples from four main categories of solid-earth deformation processes are discussed for which the GOCE and GRACE satellite gravity missions will not provide a high enough spatial or temporal resolution or a sufficient accuracy. Quasi-static and episodic solid-earth deformation would benefit from a new satellite gravity mission that would provide a higher combined spatial and temporal resolution. Seismic and core periodic motions would benefit from a new satellite mission that would be able to detect gravity variations with a higher temporal resolution combined with very high accuracies.  相似文献   

7.
GOCE卫星重力计划及其应用   总被引:2,自引:0,他引:2  
基于CHAMP和GRACE卫星,GOCE(Gravity Field and Stead—state Ocean Circulation Explore)是欧空局(ESA)的一颗重力场和静态洋流探测卫星。利用它可得到空间分辨率为200—80km的全球重力场模型和1cm精度的大地水准面.简要介绍了目前重力卫星的发展现状与其局限性,详细叙述了GOCE卫星的组成、科学目标、测量原理、在地球物理等学科中的重要应用,并提出GOCE等重力卫星资料在我国的应用设想。  相似文献   

8.
The gravity field can be recovered locally from the satellite-to-satellite velocity differences (VDs) between twin-satellites moving in the same orbit. To do so, three different integral formulae are derived in this paper to recover geoid height, radial component of gravity anomaly and gravity disturbance at sea level. Their kernel functions contain the product of two Legendre polynomials with different arguments. Such kernels are relatively complicated and it may be impossible to find their closed-forms. However, we could find the one related to recovering the geoid height from the VD data. The use of spectral forms of the kernels is possible and one does not have to generate them to very high degrees. The kernel functions are well-behaving meaning that they reduce the contribution of far-zone data and for example a cap margin of \(7^{\circ }\) is enough for recovering gravity anomalies. This means that the inversion area should be larger by \(7^{\circ }\) from all directions than the desired area to reduce the effect of spatial truncation error of the integral formula. Numerical studies using simulated data over Fennoscandia showed that when the distance between the twin-satellites is small, higher frequencies of the anomalies can be recovered from the VD data. In the ideal case of having short distance between the satellites flying at 250 km level, recovering radial component of gravity anomaly with an accuracy of 7 mGal is possible over Fennoscandia, if the VD data is contaminated only with the spatial truncation error, which is an ideal assumption. However, the problem is that the power of VD signal is very low when the satellites are close and it is very difficult to recognise the signal amongst the noise of the VD data. We also show that for a successful determination of gravity anomalies at sea level from an altitude of 250 km mean VDs with better accuracy than 0.01 mm/s are required. When coloured noise at this level is used for the VDs at 250 km with separation of 300 km, the accuracy of recovery will be about 11 mGal over Fennoscandia. In the case of using the real velocities of the satellites, the main problems are downward/upward continuation of the VDs on the mean orbital sphere and taking the azimuthal integration of them.  相似文献   

9.
An overview of advances in ice research which can be expected from future satellite gravity missions is given. We compare present and expected future accuracies of the ice mass balance of Antarctica which might be constrained to 0.1–0.3 mm/year of sea level equivalent by satellite gravity data. A key issue for the understanding of ice mass balance is the separation of secular and interannual variations. For this aim, one would strongly benefit from longer uninterrupted time series of gravity field variations (10 years or more). An accuracy of 0.01 mm/year for geoid time variability with a spatial resolution of 100 km would improve the separability of ice mass balance from mass change due to glacial isostatic adjustment and enable the determination of regional variations in ice mass balance within the ice sheets. Thereby the determination of ice compaction is critical for the exploitation of such high accuracy data. A further benefit of improved gravity field models from future satellite missions would be the improvement of the height reference in the polar areas, which is important for the study of coastal ice processes. Sea ice thickness determination and modelling of ice bottom topography could be improved as well.  相似文献   

10.
Purpose of this article is to demonstrate the effect of background geophysical corrections on a follow-on gravity mission. We investigate the quality of two effects, tides and atmospheric pressure variations, which both act as a surface load on the lithosphere. In both cases direct gravitational attraction of the mass variations and the secondary potential caused by the deformation of the lithosphere are sensed by a gravity mission. In order to assess the current situation we have simulated GRACE range-rate errors which are caused by differences in present day tide and atmospheric pressure correction models. Both geophysical correction models are capable of generating range-rate errors up to 10 μm/s and affect the quality of the recovered temporal and static gravity fields. Unlike missions such as TOPEX/Poseidon where tides can be estimated with the altimeter, current gravity missions are only to some degree capable of resolving these (geo)physical limitations. One of the reasons is the use of high inclination low earth orbits without a repeating ground track strategy. The consequence is that we will face a contamination of the gravity solution, both in the static and the time variable part. In the conclusions of this paper we provide suggestions for improving this situation, in particular in view of follow-on gravity missions after GRACE and GOCE, which claim an improved capability of estimating temporal variations in the Earth’s gravity field.  相似文献   

11.
Science Requirements on Future Missions and Simulated Mission Scenarios   总被引:4,自引:0,他引:4  
The science requirements on future gravity satellite missions, following from the previous contributions of this issue, are summarized and visualized in terms of spatial scales, temporal behaviour and accuracy. This summary serves the identification of four classes of future satellite mission of potential interest: high-altitude monitoring, satellite-to-satellite tracking, gradiometry, and formation flights. Within each class several variants are defined. The gravity recovery performance of each of these ideal missions is simulated. Despite some simplifying assumptions, these error simulations result in guidelines as to which type of mission fulfils which requirements best.  相似文献   

12.
The inversion of the variation in the land water storage in Southwest China is carried out by taking advantage of the data obtained by the earth gravity satellite GRACE (Gravity Recovery and Climate Experiment) for 64 months from January 2005 to April 2010. The result shows that by selecting an appropriate Gauss radius (R = 600 km) and taking the average gravitational field of the adopted data as the back-ground gravitational field, the land water storage in Southwest China inverted on the basis of the GRACE data reflects the drought in Southwest China at the beginning of 2010 very well.  相似文献   

13.
Extensive tests of two recent geopotential models (GEM 7 and 8) have been made with observations not used in the solutions. Several other recent models are also evaluated. These tests show the accuracy of the satellite derived model (GEM 7, with 400 coefficients) to be about 4.3 m (r.m.s.) with respect to the global geoid surface. The corresponding accuracy of the combined satellite and surface gravimetry model (GEM 8, with 706 coefficients) is found to be 3.9m (r.m.s.). These results include a calibration for the commission errors of the coefficients in the models and an estimate of the errors from omitted coefficients. For GEM 7, the formal precision (commission errors) of the solution gives 0.7 m for the geoid error which after calibration increases to 2.4 m.

Independent observations used in this assessment include: 159 lumped coefficients from 35 resonant orbits of 1 and 9 through 15 revolutions per day, two sets of (8, 8) fields derived from optical-only and laser-only data, sets of zonal and resonant coefficients derived from largely independent sources and geoid undulations measured by satellite altimetry. In addition, the accuracy of GEM 7 has been judged by the gravimetry in GEM 8. The ratio of estimated commission to formal error in GEM 7 and 8 ranges from 2 to 5 in these tests.  相似文献   


14.
Although space geodetic observing systems have been advanced recently to such a revolutionary level that low Earth Orbiting (LEO) satellites can now be tracked almost continuously and at the unprecedented high accuracy, none of the three basic methods for mapping the Earth’s gravity field, namely, Kaula linear perturbation, the numerical integration method and the orbit energy-based method, could meet the demand of these challenging data. Some theoretical effort has been made in order to establish comparable mathematical modellings for these measurements, notably by Mayer-Gürr et al. (J Geod 78:462–480, 2005). Although the numerical integration method has been routinely used to produce models of the Earth’s gravity field, for example, from recent satellite gravity missions CHAMP and GRACE, the modelling error of the method increases with the increase of the length of an arc. In order to best exploit the almost continuity and unprecedented high accuracy provided by modern space observing technology for the determination of the Earth’s gravity field, we propose using measured orbits as approximate values and derive the corresponding coordinate and velocity perturbations. The perturbations derived are quasi-linear, linear and of second-order approximation. Unlike conventional perturbation techniques which are only valid in the vicinity of reference mean values, our coordinate and velocity perturbations are mathematically valid uniformly through a whole orbital arc of any length. In particular, the derived coordinate and velocity perturbations are free of singularity due to the critical inclination and resonance inherent in the solution of artificial satellite motion by using various types of orbital elements. We then transform the coordinate and velocity perturbations into those of the six Keplerian orbital elements. For completeness, we also briefly outline how to use the derived coordinate and velocity perturbations to establish observation equations of space geodetic measurements for the determination of geopotential.  相似文献   

15.
The monitoring of the perturbed motion of artificial satellites since the 1960's has provided a valuable resource for improved activities in geodesy. These observations and the improved geodetic techniques they fostered have provided an unparalleled means for studying both the gravity field and the Earth's shape. In this paper, we will review the various determinations of the Earth's gravity field produced at many research centers over the years from space techniques. The specific methods which have been used to measure our planet, such as satellite altimetry and satellite orbital perturbation analyses (over short and long periods of time), will be compared.  相似文献   

16.
Analysis of the gravity gradiometer developed by R. L. Forward and C. C. Bell at the Hughes Research Laboratories suggest than an accuracy, in the range 0.1 to 0.5 EU can be expected in a lunar orbiter application. This accuracy will allow gradient anomalies associated with mascons to be mapped with 1% accuracy and should reveal a great deal of new information about the lunar gravity field.The proposed experiment calls for putting such a gradiometer into a closely circular polar orbit at an average height of about 30 km above the lunar surface. This orbit allows the entire lunar surface to be covered in fourteen days, the gradiometer to be checked twice per revolution and results in successive passes above the lunar surface being spaced at about the resolution limit of about 30 km set both by the satellite altitude and instrumental integration time. Doppler tracking will be employed and the spacecraft will carry an electromagnetic altimeter. Gradient and altitude data from the far side of the Moon can be stored for replay when communication is re-established.  相似文献   

17.
The analysis of variations in satellite orbits when they pass through 15th-order resonance (15 revolutions per day) yields values of lumped geopotential harmonics of order 15, and sometimes of order 30. The 15th-order lumped harmonics obtained from 24 such analyses over a wide range of orbital inclinations are used here to determine individual harmonic coefficients of order 15 and degree 15,16,…35; and the 30th-order lumped harmonics (from eight of the analyses) are used to evaluate individual coefficients of order 30 and degree 30,32,…40. The new values should be more accurate than any previously obtained. The accuracy of the 15th-order coefficients of degree 15, 16,…23 is equivalent to 1 cm in geoid height, while the 30th-order coefficients of degree 30, 32 and 34 are determined with an accuracy which is equivalent to better than 2 cm in geoid height. The results are used to assess the accuracy of the Goddard Earth Model 10B.  相似文献   

18.
基于GRACE数据的西南陆地水储量分析   总被引:1,自引:0,他引:1  
刘卫  缪元兴 《天文学报》2011,52(2):145-151
利用地球重力卫星GRACE(Gravity Recovey and Climate Experiment)2005年1月~2010年4月期间64个月的数据,对我国西南地区陆地水储量变化进行了反演.结果表明,选取适当的高斯半径(R=600 km)和所采用数据的平均引力场作为背景引力场,则基于GRACE数据反演的西南陆地水...  相似文献   

19.
GRACE重力计划在揭示地球系统质量重新分布中的应用   总被引:3,自引:0,他引:3  
2002年3月成功发射的美德合作卫星重力计划GRACE(Gravity Recovery And ClimateExperiment),即将提供空间分辨率约为200 km而时间分辨率为1个月的时变地球重力场模型序列。GRACE计划的星座由两颗相距约220 km,高度保持为300-500 km、倾角保持约90°的近极轨卫星组成。由于采用星载GPS和非保守力加速度计等高精度定轨技术,以及高精度的星一星跟踪数据反演地球重力场,在几百公里和更大空间尺度上, GRACE重力场的精度大大超过此前的卫星重力计划。根据GRACE时变重力场反演的地球系统质量重新分布,将对固体地球物理、海洋物理、气候学以及大地测量等应用有重要的意义。虽然其设计寿命只有5 yr,但研究表明GRACE的结果可用于研究北极冰长期时间尺度的变化,并进而研究极冰融化对全球气候变化,特别是对海平面长期变化的影响。在季节性时间尺度上,利用GRACE重力场反演的质量重新分布足以揭示平均小于1 cm的地表水变化,或小于1 mbar。的海底压强变化。除了巨大的社会效益和经济效益外,这些变化对了解地球系统的物质循环(主要是水循环)和能量循环有非常重要的意义。介绍GRACE重力场揭示的地球系统质量重新分布,为理解其地球物理应用提供必需的准备;同时针对我国大陆和沿海地区的地球物理应用提出初步的设想。  相似文献   

20.
The orbital parameters of Cosmos 58 have been determined at 65 epochs from some 4500 observations, between March 1982 and September 1983, using the RAE orbit refinement program, PROP. During this time, the satellite passed slowly through 15th-order resonance, and the orbital inclination and eccentricity have been analysed. Six lumped 15th-order geopotential harmonic coefficients have been evaluated, with an accuracy equivalent to between 0.8 and 2.0cm in geoid height. Six 30th-order coefficients have also been determined, with accuracies between 2 and 7 cm in geoid height. The coefficients have been compared with those from the GEM 10B and 10C models. There is good agreement for nine of the twelve coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号