首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
用CHAMP加速仪数据校验太阳活动峰年的大气模型精度   总被引:6,自引:0,他引:6  
汪宏波  赵长印 《天文学报》2008,49(2):168-178
介绍CHAMP星载加速仪数据的处理方法.通过对实测数据的分析证实仪器的x轴存在故障.为了研究太阳活动峰年大气模型的精度,处理了2001至2002年的加速仪数据,利用切向非引力加速度反算大气密度.然后从统计的角度分析DTM94和MSIS90大气模型的误差,得到一些定量的结论,太阳活动峰年DTM94的误差为30%-35%,MSIS90的误差为25%-30%,MSIS90比DTM94误差小,模型间最大差异约10%.  相似文献   

2.
本文简略介绍了MSISE90大气密度模型,它是以提高低高度大气密度计算精度为目标,基于MSIS86模式,采用不相干散射雷达和卫星质谱仪测量资料,在半经验公式的基础上进行拟合处理而成;并指出了Hedin对该模型的修正之处。并将该模型应用于GPS无线电掩星反演中性地球大气参数的先验温度序列的生成。  相似文献   

3.
本文简略介绍了MSISE90大气密度模型,它是以提高低高度大气密度计算精度为目标,基于MSIS86模式,采用不相干散射雷达和卫星质谱仪测量资料,在半经验公式的基础上进行拟合处理而成;并指出了Hedin对该模型的修正之处,并将该模型应用于GPS无线电掩星反演中性地球大气参数的先验温度序列的生成。  相似文献   

4.
Geosat卫星定轨中的大气阻力摄动   总被引:1,自引:0,他引:1  
在利用卫星测高资料定轨的过程中,大气阻力摄动的影响较大。本文在比较几种常用大气密度模型误差对定轨影响的基础上,将密度改正公式引入到Geosat卫星的精密定轨中。结果显示,该公式可以有效地提高卫星的径向定轨精度。  相似文献   

5.
为满足大气模型比较的需要,把CIRA-1986大气模式(简称CIRA86)引入大气阻力选择模块,对上海天文台人造卫星精密定轨软件SHORDE[1]进行大气模式的扩充。利用多种大气模式分别对Starlete卫星的观测资料进行解算,结果表明:SHORDE中指数大气模式更适合对Starlete卫星进行精密定轨研究  相似文献   

6.
为满足大气模型比较的需要,把CIRA-1986大气模式(简称CIRA86)引入大气阻力选择模块,对上海天文台人造卫星精密定轨软件SHORDE进行大气模式的扩充。利用多种大气模式分别对Starlette卫星的观测资料进行解算,结果表明:SHORDE中指数大气模式更适合对Starlette卫星进行精密定轨研究。  相似文献   

7.
精密定轨用地球大气模型误差的补偿方法   总被引:1,自引:0,他引:1  
汤锡生 Shum  CK 《天文学报》1997,38(3):303-311
本文提出了一种用于精密轨道确定的地球大气模型误差的补偿方法,这种方法采用改进 大气周日峰角的技术,有效地补偿了大气密度模型的误差,并具有较好的物理意义.与传统 的每圈改进一次加速度的方法比较,轨道确定达到了相当的径向精度,且避免了轨道改进参 数间的相关性,同时解算参数的数量也少了一半.  相似文献   

8.
本文借用推广的卡尔曼(Kalman)滤波法实时处理几圈单站的激光测距资料来改进卫星的轨道,以达到精密预报此后近期内卫星位置的目的。在建立动力学模型中,计及了地球扁球形的摄动、大气阻力、太阳辐射压的效应以及日月引力摄动。在计算这些摄动过程中,地球重力位对带谐、扇谐和田谐项都展开到了第11次和第11阶;大气密度分布采用简化的“指数模型”;地影假定呈圆柱形;并以旋转的开普勒轨道求日月的地心坐标。在卫星的状态估计过程中应用推广的序列估计算法,借助数值积分方法积分状态向量和协方差矩阵。利用激光卫星LAGEOS的测距模拟资料和真实数据分别对本方法进行了检验。结果表明:应用本方法即使处理单站的少数几圈的观测数据,可相当精确地预报卫星在此后几圈的位置。如果处理更多圈数的数据,则卫星的预报可以达到更高的精度。并且由于按照本方法建立起来的计算程序可以在小型电子计算机,例如PDP11/60上实施,同时保持应有的精度,因此它颇具有实用的价值。  相似文献   

9.
GPS掩星折射率剖面一维变分同化   总被引:11,自引:1,他引:10  
洪振杰  郭鹏  刘敏  黄珹 《天文学报》2006,47(1):100-110
近年来,GPS/LEO(全球定位系统/低地球轨道)卫星无线电掩星技术给出了地球大气探测的新途径.从LEO卫星观测到的掩星数据可以反演的地球大气的气压、水汽、温度等剖面;它们对气象和大气科学研究,是具有潜在价值的数据资源.掩星数据资料的同化技术可以有效地改进这些气象参数的剖面,从而改进目前的数值天气预报模式.在当前采用的一维变分同化反演技术中,可以用掩星观测资料的大气折射率或弯曲角剖面进行同化,来反演大气水汽和温度剖面以及海平面压强.作为独立自主开发的GPD/LEO掩星技术系统的一部分,以欧洲中尺度天气预报分析(ECMWF)资料为背景场,CHAMP 掩星观测得到的折射率剖面为观测值,采用Levenberg—Marquardt方法实行GPS掩星资料一维变分同化.在讨论中,用掩星观测点附近相应的探空气球资料来检验CHAMP掩星资料变分同化的结果.  相似文献   

10.
非圆轨道GPS/LEO掩星反演地球大气参数的算法及讨论   总被引:4,自引:3,他引:1  
在非圆轨道GPS和LEO卫星条件下,给出一种较为直接的GPS/LEO掩星反演地球大气参数技术中弯曲角序列的迭代算法,并在理论上对该迭代法的收敛性进行了严格的数学证明.利用GPS掩星反演模拟程序,定量估算了卫星圆轨道假设对GPS/LEO掩星反演地球大气参数的影响,并验证了在非圆轨道条件下各种迭代法的一致性.指出了文献中给出的级数展开迭代算法的不足之处.  相似文献   

11.
The atmospheric mass density of the upper atmosphere from the spherical Starlette satellite’s Precise Orbit Determination is first derived with Satellite Laser Ranging measurements at 815 to 1115 km during strong solar and geomagnetic activities. Starlette’s orbit is determined using the improved orbit determination techniques combining optimum parameters with a precise empirical drag application to a gravity field. MSIS-86 and NRLMSISE-00 atmospheric density models are compared with the Starlette drag-derived atmospheric density of the upper atmosphere. It is found that the variation in the Starlette’s drag coefficient above 800 km corresponds well with the level of geomagnetic activity. This represents that the satellite orbit is mainly perturbed by the Joule heating from geomagnetic activity at the upper atmosphere. This result concludes that MSIS empirical models strongly underestimate the mass density of the upper atmosphere as compared to the Starlette drag-derived atmospheric density during the geomagnetic storms. We suggest that the atmospheric density models should be analyzed with higher altitude acceleration data for a better understanding of long-term solar and geomagnetic effects.  相似文献   

12.
Modeling the effects of atmospheric drag is one of the more important problems associated with the determination of the orbit of a near-earth satellite. Errors in the drag model can lead to significant errors in the determination and prediction of the satellite motion. The uncertainty in the drag acceleration can be attributed to three separate effects: (a) errors in the atmospheric density model, (b) errors in the ballistic coefficient, and (c) errors in the satellite relative velocity. In a number of contemporary satellite missions, the requirements for performing the orbit determination and predictions in near real-time has placed an emphasis on density model computation time as well as the model accuracy. In this investigation, a comparison is made of three contemporary atmospheric density models which are candidates for meeting the current orbit computation requirements. The models considered are the analytic Jacchia-Roberts model, the modified Harris-Priester model, and the USSR Cosmos satellite derived density model. The computational characteristics of each of the models are compared and a modification to the modified Harris-Priester model is proposed which improves its ability to represent the diurnal variation in the atmospheric density.This investigation was supported by the NASA Goddard Spaceflight Center under contract NAS5-20946 and Contract NSG 5154.  相似文献   

13.
Atmospheric densities derived from CHAMP/STAR accelerometer observations   总被引:3,自引:0,他引:3  
The satellite CHAMP carries the accelerometer STAR in its payload and thanks to the GPS and SLR tracking systems accurate orbit positions can be computed. Total atmospheric density values can be retrieved from the STAR measurements, with an absolute uncertainty of 10-15%, under the condition that an accurate radiative force model, satellite macro-model, and STAR instrumental calibration parameters are applied, and that the upper-atmosphere winds are less than . The STAR calibration parameters (i.e. a bias and a scale factor) of the tangential acceleration were accurately determined using an iterative method, which required the estimation of the gravity field coefficients in several iterations, the first result of which was the EIGEN-1S (Geophys. Res. Lett. 29 (14) (2002) 10.1029) gravity field solution. The procedure to derive atmospheric density values is as follows: (1) a reduced-dynamic CHAMP orbit is computed, the positions of which are used as pseudo-observations, for reference purposes; (2) a dynamic CHAMP orbit is fitted to the pseudo-observations using calibrated STAR measurements, which are saved in a data file containing all necessary information to derive density values; (3) the data file is used to compute density values at each orbit integration step, for which accurate terrestrial coordinates are available. This procedure was applied to 415 days of data over a total period of 21 months, yielding 1.2 million useful observations. The model predictions of DTM-2000 (EGS XXV General Assembly, Nice, France), DTM-94 (J. Geod. 72 (1998) 161) and MSIS-86 (J. Geophys. Res. 92 (1987) 4649) were evaluated by analysing the density ratios (i.e. “observed” to “computed” ratio) globally, and as functions of solar activity, geographical position and season. The global mean of the density ratios showed that the models underestimate density by 10-20%, with an rms of 16-20%. The binning as a function of local time revealed that the diurnal and semi-diurnal components are too strong in the DTM models, while all three models model the latitudinal gradient inaccurately. Using DTM-2000 as a priori, certain model coefficients were re-estimated using the STAR-derived densities, yielding the DTM-STAR test model. The mean and rms of the global density ratios of this preliminary model are 1.00 and 15%, respectively, while the tidal and latitudinal modelling errors become small. This test model is only representative of high solar activity conditions, while the seasonal effect is probably not estimated accurately due to correlation with the solar activity effect. At least one more year of data is required to separate the seasonal effect from the solar activity effect, and data taken under low solar activity conditions must also be assimilated to construct a model representative under all circumstances.  相似文献   

14.
The accuracy of the atmospheric density and its spatiotemporal variations given by the NRLMSISE-00 atmosphere model at the solar minimum are estimated using density measurements of the CACTUS microaccelerometer at heights of 270–600 km. The model errors are found to be noticeably (by a factor of 2–3) higher than the errors in atmospheric densities obtained from satellite drag data at solar minima. Microaccelerometer density data are used to study short-period (during one orbit) spatiotemporal density variations. The analysis of density variations over one orbit reveals orographic and continental effects. The amplitudes of the continental and orographic effects are estimated at 10–15% at a height of 270 km and 40% at a height of 600 km.  相似文献   

15.
简述了DTM94 大气模型, 并以其旧版本DTM78 为对照进行了初步考察和分析, 其中给出了两种模型的大气密度随地磁指数kp 和太阳辐射流量(Solar Radio Flux) 变化的情况, 并对20d ( 天) 弧长Ajisai 卫星的全球SLR观测资料进行处理, 结果表明DTN94 对近地卫星Ajisai 的精密定轨是十分有利的。  相似文献   

16.
Satellites in almost circular paths experience appreciable drag throughout the entire orbit; the localised effect being intrinsically related to the global distribution of exospheric temperature. To normalise the density values derived from such orbits to a fixed temperature, an effective exospheric temperature is required. In this paper a “pseudo” exospheric temperature is determined analytically such that, by assuming the atmosphere is held constant at this temperature, the same perturbation in the semi-major axis is achieved as that by a satellite moving in an atmosphere exhibiting a realistic approximant to the measured diurnal variation in temperature. The theory is applied to data and densities derived from orbital analysis of Skylab 1 and the course of the semi-annual variation is retraced for 1974–1976.  相似文献   

17.
We consider the effects of the absorption of solar XUV radiation by the Earth's atmosphere that were observed in the solar images obtained with the TEREK-K telescope onboard the Coronas-I satellite in May–June 1994 at low solar activity and with the SPIRIT instrumentation onboard the Coronas-F satellite in October–November 2001 at maximum solar activity. The solar images were recorded during the satellite occultation: in the 175- and 304-A spectral ranges onboard Coronas-I with the TEREK-K telescope and in the 175-, 304-, and 8.42-A ranges onboard Coronas-F with the SPIRIT instrumentation. Based on the XUV solar images obtained during atmospheric sounding, apart from the total absorption, we can determine the direction of the atmospheric density gradient and study the local absorption variations with altitude on spatial scales of less than 1 km. The described method can significantly supplement the data obtained in studies of the upper atmosphere by the methods of mass spectrometry, incoherent radar scattering, and the drag of orbital spacecraft.  相似文献   

18.
Theory of the motion of an artificial Earth satellite   总被引:1,自引:0,他引:1  
An improved analytical solution is obtained for the motion of an artificial Earth satellite under the combined influences of gravity and atmospheric drag. The gravitational model includes zonal harmonics throughJ 4, and the atmospheric model assumes a nonrotating spherical power density function. The differential equations are developed through second order under the assumption that the second zonal harmonic and the drag coefficient are both first-order terms, while the remaining zonal harmonics are of second order.Canonical transformations and the method of averaging are used to obtain transformations of variables which significantly simplify the transformed differential equations. A solution for these transformed equations is found; and this solution, in conjunction with the transformations cited above, gives equations for computing the six osculating orbital elements which describe the orbital motion of the satellite. The solution is valid for all eccentricities greater than 0 and less than 0.1 and all inclinations not near 0o or the critical inclination. Approximately ninety percent of the satellites currently in orbit satisfy all these restrictions.  相似文献   

19.
The paper offers the fully analytic solution to the motion of a satellite orbiting under the influence of the two major perturbations, due to the oblateness and the atmospheric drag. The solution is presented in a time-explicit form, and takes into account an exponential distribution of the atmospheric density, an assumption that is reasonably close to reality. The approach involves two essential steps. The first one concerns a new approximate mathematical model that admits a closed-form solution with respect to a set of new variables. The second step is the determination of an infinitesimal contact transformation that allows to navigate between the new and the original variables. This contact transformation is obtained in exact form, and afterwards a Taylor series approximation is proposed in order to make all the computations explicit. The aforementioned transformation accommodates both perturbations, improving the accuracy of the orbit predictions by one order of magnitude with respect to the case when the atmospheric drag is absent from the transformation. Numerical simulations are performed for a low Earth orbit starting at an altitude of 350 km, and they show that the incorporation of drag terms into the contact transformation generates an error reduction by a factor of 7 in the position vector. The proposed method aims at improving the accuracy of analytic orbit propagation and transforming it into a viable alternative to the computationally intensive numerical methods.  相似文献   

20.
Air density at a height of 180–200 km from July 1967 to September 1969 has been determined from analysis of the high eccentricity orbit of satellite 1967-31A. The data show good correlation between sudden density increase and geomagnetic disturbance. The increases for disturbances of equal strength are approximately 40% greater during night-time than daytime hours. The day-night influence is also observed in the changes in density with changes in the solar flux index, F10. The 27-day density variation is predominant mainly during night-time, although the atmospheric response to F10 variations is quite variable regardless of local time. A semi-annual variation of approx. 40% is observed. Also found is a 25% diurnal variation for heights near 170–180 km, which is in good agreement with the CIRA 1972 atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号